
CHAPTER 6: SPRING RESTFUL WEB SERVICES FRAMEWORK 141

Listing 6.3 Output of running the RestWebAPIConsumer program

1 Executing request: GET http://localhost:8080/soba/restTx/txID/210225211

HTTP/1.1

2 --

3 HTTP/1.1 200 OK

4 Response content length: -1

5 Response content type: application/json;charset=UTF-8

6 {"transactionId":210225211,"transDate":1442097239000,"type":"regular","ini

tiator":"self","description":"testing","amount":100.0,"balance":100.0,"acc

ountId":"298743065","status":"complete","id":210225211}

7 Response status: HTTP/1.1 201 Created

8 All response headers ----- begin ----------

9 header: name = Server, value = Apache-Coyote/1.1

10 header: name = Cache-Control, value = no-store
11 header: name = Pragma, value =
12 header: name = Expires, value = 0
13 header: name = X-XSS-Protection, value = 1; mode=block
14 header: name = X-Frame-Options, value = DENY
15 header: name = X-Content-Type-Options, value = nosniff
16 header: name = method, value = createTransaction
17 header: name = tx, value = transactionId: 818679184;accountId:

298743065;amount: 1.23

18 header: name = Content-Type, value = text/plain;charset=ISO-8859-1
19 header: name = Content-Length, value = 83
20 header: name = Date, value = Sat, 12 Sep 2015 23:05:31 GMT
21 All response headers ----- end ----------
22 Response body ----- begin ----------
23 Rest createTx succeeded: transactionId: 818679184;accountId:

298743065;amount: 1.23

24 Response body ----- end ----------

You can also use Spring RestTemplate in the client in place of the Apache HttpClient API as shown

above. Refer to the Spring Framework reference documentation for more information on how to access

RESTful services on the client the Spring-way.

Next, we discuss how to use jQuery and its Ajax functions to consume Spring RESTful Web services.

6.5 CONSUMING RESTFUL WEB SERVICES USING JQUERY AND ITS

AJAX FUNCTIONS

Ideally, a performing and scalable web application should have its backend send data to the frontend,

which renders the UI to the user, rather than render a page into a HTML file and send it to the user’s

browser for display. In this regard, JavaScript, jQuery, Ajax and various JavaScript-based UI

frameworks, such as AngularJS, Backbone, Ember, Google Web Toolkit, and so on, represent some of

the mainstream technologies. Figure 6.1 shows the Codebrief’s view of the top 10 JavaScript MVC

frameworks (http://codebrief.com/2012/01/the-top-10-javascript-mvc-frameworks-reviewed/).

http://codebrief.com/2012/01/the-top-10-javascript-mvc-frameworks-reviewed/

142 SPRING 4 FOR DEVELOPING ENTERPRISE APPLICATIONS: AN END-TO-END APPROACH

Figure 6.1 The Top 10 JavaScript MVC Frameworks Reviewed (codebrief.com)

This section shows a simple example of how to use jQuery and its Ajax functions to consume RESTful

Web services. I wish to build an entirely new Ember.js-based or Backbone.js-based frontend for SOBA,

but it would take a lot more time than the simple jQuery/Ajax-based demo to be presented here. In

addition, the learning curve with Ember.js or Backbone.js would be much steeper than with jQuery/Ajax

for a reader. So, let’s settle down on jQuery/Ajax for now.

6.5.1 HTML/JSP

The first step is to have an HTML file that represents the UI. Listing 6.4 shows this file. We made it a

JSP file, as we wanted to make it part of SOBA. For this purpose, note the item ${ctx} at line 8. This

item is defined in the include.jsp file as follows:

<c:set var="ctx" value="${pageContext.request.contextPath}"/>

The ctx variable in the above line represents the pageContext as is explicit from its value definition.

Specifically, the ${ctx} entry will be replaced at runtime with “soba” so that the src variable at line 8

will be translated into:

soba/rest/js/rest.js

CHAPTER 6: SPRING RESTFUL WEB SERVICES FRAMEWORK 143

This way, we do not have to hard-code the entry “soba” into the script. We could have made this file a

rest.html file if we put “soba” in place of “${ctx}” at line 8. Either way, the rest.js script, which is

the jQuery/Ajax script for this demo, will be triggered when the HTML or jsp file is accessed.

In addition to the above subtlety, note the following in Listing 6.4:

▪ Line 7 enables jQuery library by instructing downloading jquery.min.js from Google’s ajax website.

▪ Lines 13 and 14 define two variables named “transactionId” and “amount,” respectively. The

values of these two variables will be used to display the two lines there, after the rest.js

jQuery/Ajax script is triggered and executed.

Next, we discuss the rest.js jQuery/Ajax script mentioned above.

Listing 6.4 rest.jsp

1 <%@ include file = "../WEB-INF/jsp/include.jsp" %>

2 <%@ taglib prefix="c" uri="http://java.sun.com/jsp/jstl/core" %>

3 <!DOCTYPE html>

4 <html>

5 <head>

6 <title>Hello jQuery for Spring REST</title>

7 <script

src="https://ajax.googleapis.com/ajax/libs/jquery/1.10.2/jquery.min.js"></

script>

8 <script src="${ctx}/rest/js/rest.js"></script>

9 </head>

10
11 <body>
12 <div>
13 <p class="transactionId">The tx ID is </p>
14 <p class="amount">The amount is </p>
15 </div>
16 </body>
17 </html>

6.5.2 JQuery/Ajax

jQuery, as introduced at https://jquery.com, is a fast, compact JavaScript library, which helps simplify

developing JavaScript-based UIs. Its APIs work across all common browsers for common operations

such as:

▪ Navigating and Manipulating DOM elements through jQuery Objects

▪ Accessing DOM elements through a concept of selectors

▪ Handling events for richly interactive Web pages

▪ Dynamically accessing and manipulating Web pages

▪ Accessing data outside the Web page using Screen objects, Window objects, browser Location

objects and browser History objects, and so on

▪ Enhancing user interaction through animation and other special effects

▪ Interacting with Web forms

144 SPRING 4 FOR DEVELOPING ENTERPRISE APPLICATIONS: AN END-TO-END APPROACH

▪ Creating advanced Web page elements

▪ Accessing server-side data via Ajax

The other companion part of jQuery is jQueryUI, which is available at https://jqueryui.com. As is

documented there, jQueryUI is divided into the following categories:

▪ Interactions:

 Draggable

 Droppable

 Resizable

 Selectable

 Sortable

▪ Widgets:

 Accordian

 Autocomplete

 Button

 Datepicker

 Dialog

 Menu

 Progressbar

 Selectmenu

 Slider

 Spinner

 Tabs

 Tooltip

▪ Effects:

 Add Class

 Color Animation

 Easing

 Effect

 Hide

 Remove Class

 Show

 Switch Class

 Toggle

 Toggle Class

▪ Utilities:

 Position

 Widget Factory

https://jqueryui.com/

CHAPTER 6: SPRING RESTFUL WEB SERVICES FRAMEWORK 145

If you have some UI programming experience, the above concepts should sound familiar and clear to

you. If you don’t, don’t worry as we will not use them in our demo. Instead, we will use the jQuery’s

$.ajax function as described below.

The jQuery’s $.ajax function is documented at http://api.jquery.com/jquery.ajax/. This function

performs asynchronous HTTP (Ajax) requests. Its format is as simple as follows:

jQuery.ajax(url [, settings])

Here, url is a string representing the URL to send the request to, while settings is a PlainObject that

represents a set of key/value pairs that configure the Ajax request. All settings are optional, although

missing some settings may result in a non-functioning UI, as we will see with this demo. Some of the

optional settings include:

▪ async (default: true): By default, all requests are sent asynchronously. Set it to false for synchronous

calls.

▪ cache (default: true): By default, the result is cached at the browser level.

▪ dataType (default: Intelligent Guess (xml, json, script, or html)): The type of data expected from the

server. If none is specified, jQuery will try to infer it based on the MIME type of the response (an

XML MIME type will yield XML, in 1.4 JSON will yield a JavaScript object, in 1.4 script will

execute the script, and anything else will be returned as a string). The available types (and the result

passed as the first argument to your success callback) are:

 "xml": Returns an XML document that can be processed via jQuery.

 "html": Returns HTML as plain text; included script tags are evaluated when inserted in the DOM.

 "script": Evaluates the response as JavaScript and returns it as plain text. Disables caching by

appending a query string parameter, _=[TIMESTAMP], to the URL unless the cache option is set

to true.

 "json": Evaluates the response as JSON and returns a JavaScript object. Cross-domain "json"

requests are converted to "jsonp" unless the request includes jsonp: false in its request options. The

JSON data is parsed in a strict manner; any malformed JSON is rejected and a parse error is

thrown. As of jQuery 1.9, an empty response is also rejected; the server should return a response

of null or {} instead.

 "jsonp": Loads in a JSON block using JSONP. Adds an extra "?callback=?" to the end of the

URL to specify the callback. Disables caching by appending a query string parameter,

"_=[TIMESTAMP]", to the URL unless the cache option is set to true.

 "text": A plain text string

▪ password: A password to be used with XMLHttpRequest in response to an HTTP access

authentication

▪ username: A username to be used with XMLHttpRequest in response to an HTTP access

authentication

As you see, the dataType parameter is emphasized more than others with a more detailed description,

which is because the demo we will present would not work without specifying this parameter.

Now, Listing 6.5 shows the rest.js script. Compare this listing with Listing 6.2. What do you think? I

am asking this question, because you may notice a drastic programming paradigm shift from Java to

http://api.jquery.com/jquery.ajax/

146 SPRING 4 FOR DEVELOPING ENTERPRISE APPLICATIONS: AN END-TO-END APPROACH

jQuery/Ajax! It’s not well-structured, object-oriented programming style any more. In order to

understand this programming paradigm shift, next, let’s have a general understanding of the $.ajax()

function first. Then we come back and explain how the jQuery/Ajax script shown in Listing 6.5 works.

Listing 6.5 The jQuery/Ajax script (rest.js)

1 $.support.cors = true;

2 $(document).ready(function() {

3 $.ajax({

4 url: "http://localhost:8080/soba/restTx/txID/161990136",

5 dataType: 'json'

6 }).then(function(data) {

7 alert(data.amount);

8 $('.transactionId').append(data.transactionId);

9 $('.amount').append(data.amount);

10 });
11 });

6.5.3 The $.ajax() Function

The $.ajax() function supports all Ajax requests sent by jQuery. At its simplest, the $.ajax() function

can be called with no arguments as follows:

$.ajax();

The above statement, using no options, loads the contents of the current page, but does nothing with the

result. To consume the result, you need to implement proper callback functions through the jqXHR

object, included in the jQuery XMLHttpRequest(jqXHR) object returned by $.ajax().

As of jQuery 1.5, the jqXHR objects returned by $.ajax() implement the Promise interface, giving the

jqXHR objects all the properties, methods, and behavior of a Promise. Available Promise methods of the

jqXHR object include:

▪ jqXHR.done(function(data, textStatus, jqXHR) {}): This method instructs to add handlers to be

called when the Deferred object is resolved.

▪ jqXHR.fail(function(jqXHR, textStatus, errorThrown) {}): This method instructs to add handlers to

be called when the Deferred object is rejected.

▪ jqXHR.always(function(data|jqXHR, textStatus, jqXHR|errorThrown) { }): This method instructs

to add handlers to be called when the Deferred object is either resolved or rejected.

In response to a successful request, the function's arguments are the same as those of .done(): data,

textStatus, and the jqXHR object. For failed requests the arguments are the same as those of .fail():

the jqXHR object, textStatus, and errorThrown.

In addition, the jqXHR.then(function(data, textStatus, jqXHR) {}, function(jqXHR, textStatus,

errorThrown) {}) incorporates the functionality of the .done() and .fail() methods, allowing (as of

jQuery 1.8) the underlying Promise to be manipulated. It instructs to add handlers to be called when the

Deferred object is resolved, rejected, or still in progress.

CHAPTER 6: SPRING RESTFUL WEB SERVICES FRAMEWORK 147

The done, fail and then methods are implemented by the Deferred Object underneath, which is, as of

jQuery 1.5, a chainable utility object created by calling the jQuery.Deferred() method. It can register

multiple callbacks into callback queues, invoke callback queues, and relay the success or failure state of

any synchronous or asynchronous function. These methods take one or more function arguments that are

called when the $.ajax() request terminates. This allows you to assign multiple callbacks on a single

request, and even to assign callbacks after the request may have completed. (If the request is already

complete, the callback is fired immediately.)

Both a Deferred object and a jQuery object are chainable. After creating a Deferred object, you can use

any of their methods by either chaining directly from the object creation or saving the object in a variable

and invoking one or more methods on that variable. See http://api.jquery.com/category/deferred-object/

for more information on Deferred object and all relatable methods.

Note: Deprecation Notice: The jqXHR.success(), jqXHR.error(), and jqXHR.complete()

callbacks are deprecated as of jQuery 1.8. Use jqXHR.done(), jqXHR.fail(), and jqXHR.always(),

respectively, instead.

Now, we are ready to examine the jQuery/Ajax script shown in Listing 6.5. For convenience, it is copied

below. It is explained as follows:

▪ Line 1: This is to prevent the error of “Cross-Origin Request Blocked: The Same Origin Policy

disallows reading the remote resource at ...” from happening. The term CORS stands for Cross-

Origin Resource Sharing.

▪ Line 2: This is jQuery’s $(document).ready() function. A page can't be manipulated safely until

the document is "ready." jQuery detects the state of readiness, after which, code included inside $(

document).ready() will be run once the page Document Object Model (DOM) is ready for

JavaScript code to execute. Similarly, when the entire page including not only DOM, but also

images, iframes, and so on, is ready, code included inside $(window).load(function() { ...

}) will run.

▪ Line 3: This is the beginning of the $.ajax function we introduced above.

▪ Line 4: This is the same URL for the RESTful Web services as we discussed in the preceding

sections.

▪ Line 5: This is the dataType parameter, implying that the response should be treated as a JSON

object. We’ll come back to this later.

▪ Line 6: This is the “then” method we discussed previously. It’s an all-in-one catch for all of the

done, fail, and in-progress events. Note that data here represents the result of the Ajax call.

▪ Line 7: This is the alert function that will pop up a dialog window with the parameter object

displayed on the window. Execution will be paused until the OK button is clicked, as we will see

later.

▪ Line 8: This statement binds the value of data.transactionId to the transactionId variable on

the HTML/JSP side, as shown in Listing 6.4.

▪ Line 9: This line is similar to line 8 except it is for the amount attribute.

▪ Lines 10 and 11: Just closing parenthesis and brackets

http://api.jquery.com/category/deferred-object/

148 SPRING 4 FOR DEVELOPING ENTERPRISE APPLICATIONS: AN END-TO-END APPROACH

Next, we discuss the Restful Web Services expressed at line 4.

1 $.support.cors = true;

2 $(document).ready(function() {

3 $.ajax({

4 url: "http://localhost:8080/soba/restTx/txID/161990136",

5 dataType: 'json'

6 }).then(function(data) {

7 alert(data.amount);

8 $('.transactionId').append(data.transactionId);

9 $('.amount').append(data.amount);

10 });
11 });

Note: The AJAX requests out of the $.ajax() function used as above are considered low-level AJAX

requests. Some higher-level functions, such as .load(), .get(), and .post(), are available as easier-to-

use equivalent wrappers.

6.5.4 RESTful Web Services

For this demo, we use the same RESTful Web services as discussed in §6.3, namely, the

RestTxController class. It provides APIs for retrieving banking transactions by ID and inserting

transactions, and so on. Since we already introduced it in §6.3, we would not spend more time here on it.

6.5.5 Spring Wiring

A question is how we can wire it into the SOBA sample that you are already familiar with at this point.

Here is a list of changes I made in order to make that happen:

▪ Adding a servlet for handling JavaScript scripts ending in “.js:” This is done in web.xml by adding

the following servlet-mapping. If it were not added, the servlet engine would complain that the

resource for the rest.js script could not be found.

 <servlet-mapping>
 <servlet-name>DefaultServlet</servlet-name>
 <url-pattern>*.js</url-pattern>
 </servlet-mapping>

▪ Where to instantiate it? I modified the original dummy Messages tab in the activityList.jsp file so that

after a user logs in and clicks on it, it will trigger the rest.jsp file:

 <td > jQuery-ajax-test </td>

Note that the rest.jsp and rest.js files must be dropped to a servlet engine’s webapps folder in order to

test it. We cannot simply put them in an arbitrary folder, click on the HTML or jsp file and expect that

the JavaScript/Ajax script would be triggered.

CHAPTER 6: SPRING RESTFUL WEB SERVICES FRAMEWORK 149

Next, we discuss how to test this demo.

6.5.6 Testing

Here is the procedure for testing how Spring RESTful Web services can be consumed by using

jQuery/Ajax based clients:

1. After building SOBA successfully, deploy it to Tomcat as described in Chapter 2.

2. Start up Tomcat

3. Login as an existing user

4. Identify the last tab named jQuery-ajax-test. Before clicking on it, edit the rest.js file in the

webapps\soba\rest\ folder and replace the transactionId with one that exists in your database.

Save your change to the rest.js file.

5. Now click on the jQuery-ajax-test tab, and you should see a dialog similar to Figure 6.2. Click on

OK and you should get the final result similar to Figure 6.3.

Figure 6.2 Dialog from the JavaScript/Ajax demo

Figure 6.3 Result after the jQuery/Ajax script was executed successfully

150 SPRING 4 FOR DEVELOPING ENTERPRISE APPLICATIONS: AN END-TO-END APPROACH

Before concluding this demo, I’d like to ask you to do one experiment, namely, remove line 5 as shown

below and retry the test (you also need to remove the comma sign at the end of the preceding line):

 dataType: 'json'

You would get a dialog box as shown in Figure 6.4, which shows “undefined” for the amount attribute.

Figure 6.4 Result if the dataType parameter specified as ‘json’ were removed in the jQuery/Ajax script

Now, if you copy and paste the URL in the rest.js file directly in the address box of your browser, hit

Return and you might get an XML response similar to Figure 6.5. This explains why the dataType

parameter for the $.ajax() call needs to be specified if a non-XML response is expected.

Figure 6.5 Result if the dataType parameter specified as ‘json’ were removed in the $.ajax() call

This concludes our demo of using jQuery/Ajax to consume Spring RESTful Web services.

