
CHAPTER 5: SPRING DATA ACCESS FRAMEWORK 99

 public String toString() {
 <omitted>
 }
}

Note that whether a DAO is implemented in JDBC or Hibernate, it’s used the same way in

a service bean, as the service depends on the DAO interface rather than the implementation.

Because of this transparency, we could have just stopped here without showing how the

service layer of SOBA performs bill payment tasks with HibernateBillPaymentDao

working behind the scene. However, this actually is a good place for us to get a little deeper

on Spring validation framework by picking up where we left off with the bill payment use

scenario demonstrated in Section 2.7. This is the subject of the next section.

5.6 SPRING DATA VALIDATION FRAMEWORK

To get a complete picture about how Spring validation works with the bill pay service, let’s

begin with the programmatic logic flow with the bill pay service implemented in SOBA.

5.6.1 Programmatic Logic Flow with the Bill Pay Service

Since we have covered so much about how Spring MVC works, let us capture the essence

of the programmatic logic flow associated with the bill pay service by looking at what

classes get involved at each layer. Table 5.2 lists the Java classes associated with this

service. It should be clear what each Java class does based on its name and in which layer it

is placed.

Table 5.2 Java classes at each layer for the bill pay service

Layer Java Classes

Domain object
BillPayment.java

DAO
BillPaymentDao.java
HibernateBillPayemntDao.java

Service
BillPayManager.java/SimpleBillPayManager.java
CreateBillPayValidator.java

Web
CreateBillPayFormController.java
CreateBillPaySuccessController.java

View
createBillPayForm.jsp
createBillPaySuccess.jsp

Now let us take a look at how the bill pay service flows programmatically based on the Java

classes associated with it as listed in Table 5.2. This service is initiated when a user clicks

on the Bill Payment tab on the home page as shown in Figure 2.18. That home page was

generated with the activityList.jsp, which has an embedded link as shown below:

<a href = "<c:url value = "createBillPayForm/customerId/${customerId}/
accountId/${accountId}"/>">Bill Payment

100 DEVELOPING ENTERPRISE JAVA APPLICATIONS WITH SPRING: AN END-TO-END APPROACH

Note the url value hard-coded in the above HTML element. It is similar to the

RequestMapping we introduced in Listing 4.5 CreateCustomerFormController.java.

Not surprisingly, it is mapped to the CreateBillPayFormController.java class as shown

in Listing 5.11. When control is directed to this class, the setupForm method is executed

first, which creates a billPayment object with some of the attributes pre-populated. Most

of the pre-populated attributes here are purely for our convenience except the fromAccount

attribute so that we don’t have to type them every time when we test this service. Then, the

setupForm method returns control to the createBillPayForm, namely, the

createBillPayment.jsp. The form is then presented to the user for entering all required

information for a bill payment transaction. Refer back to Figure 2.19 for an actual instance

of this form.

Listing 5.11 CreateBillPayFormController.java

package com.perfmath.spring.soba.web;
import java.sql.Timestamp;
import java.util.List;
import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.stereotype.Controller;
import org.springframework.ui.Model;
import org.springframework.validation.BindingResult;
import org.springframework.web.bind.annotation.ModelAttribute;
import org.springframework.web.bind.annotation.PathVariable;
import org.springframework.web.bind.annotation.RequestMapping;
import org.springframework.web.bind.annotation.RequestMethod;
import org.springframework.web.bind.annotation.RequestParam;
import org.springframework.web.bind.annotation.SessionAttributes;
import org.springframework.web.bind.support.SessionStatus;

import com.perfmath.spring.soba.model.domain.BillPayment;
import com.perfmath.spring.soba.service.BillPayManager;
import com.perfmath.spring.soba.service.CreateBillPayValidator;
import com.perfmath.spring.soba.util.RandomID;

@Controller
@RequestMapping("/createBillPayForm/customerId/{customerId}/accountId/{acco

untId}")
@SessionAttributes("billPay")
public class CreateBillPayFormController {

 private CreateBillPayValidator validator;
 private BillPayManager billPayManager;
 @Autowired
 public CreateBillPayFormController(BillPayManager billPayManager,
 CreateBillPayValidator validator) {
 this.billPayManager = billPayManager;
 this.validator = validator;

CHAPTER 5: SPRING DATA ACCESS FRAMEWORK 101

 }
 @RequestMapping(method = RequestMethod.GET)
 public String setupForm(
 @PathVariable String accountId,
 Model model) {
 BillPayment billPayment = new BillPayment();
 billPayment.setFromAccount(accountId);
 billPayment.setDescription("bill pay test");
 billPayment.setAddress("One Way");
 billPayment.setCity("Any City");
 billPayment.setState("CA");
 billPayment.setZipcode("95999");
 model.addAttribute("billPayment", billPayment);
 return "createBillPayForm";
 }
 @RequestMapping(method = RequestMethod.POST)
 public String submitForm(
 @PathVariable String customerId,
 @ModelAttribute("billPayment") BillPayment billPayment,
 BindingResult result, SessionStatus status) {
 validator.validate(billPayment, result);

 if (result.hasErrors()) {
 return "createBillPayForm";
 } else {
 billPayManager.storeBillPayment(billPayment);
 status.setComplete();
 return "redirect:/createBillPaySuccess/customerId/" + customerId;
 }
 }
}

After a user fills in the bill payment form and hits Submit button, control is redirected back

to the class CreateBillPayFormController.java, and the submitForm is initiated. As is

seen from Listing 5.11, the submitForm method validates the billPayment object using

the validate method of its validator. This is where validation gets invoked, as is

discussed next. If validation is successful without errors, control is directed to the

CreateBillPaySuccessController, which presents the responses back to the user via the

createBillPaySuccessForm.jsp as listed in Table 5.2. If errors occurred during

validation, control would be directed back to the bill pay form to display the errors to the

user so that the user can correct the errors and resubmit the bill pay again.

Next, we focus on understanding how Spring Validation Interface works in the specific

context of this bill pay service example.

5.6.2 Spring Validation Interface

102 DEVELOPING ENTERPRISE JAVA APPLICATIONS WITH SPRING: AN END-TO-END APPROACH

Refer back to Figure 2.19, which shows an actual instance of a bill pay form. Since the

user’s own account ID has been pre-populated, we don’t have to worry about it at all. Of

course, in reality, a user might have an option to decide from which account the fund

should be used to pay the bill, but that is not very important for our example here. Our

concern is how to validate the data entered on this form by the user.

We are particularly concerned about how the bill pay amount is validated. As is shown in

Listing 5.12 CreateBillPayValidator.java, we use a Validator interface in Spring’s

validation package, which is very basic and usable. This BillPayment validator has two

methods: supports (…) and validate (…). The supports method checks whether the

passed-in type supports validation, whereas the validate method does the actual validation

if this validator supports validation. The validate method uses a method of

rejectIfEmptyOrWhitespace (errors, "amount", "required.amount", "amount

is required.") on the Spring ValidationUtils class to validate the attribute amount of

type double. This entry is rejected if a user enters an empty or whitespace string or an

invalid item in the amount field on the createBillPayForm form defined in

createBillPayForm.jsp file. If a type mismatch occurs, an error message of “invalid

data” would be displayed near the amount field entry, according to the typeMismatch

entry defined in the messages.properteis file located at the root class path of SOBA.

Of course, you can introduce additional validation based on your business context, after

form data format is validated. For example, the validate method for this example further

validates that the bill pay amount must be larger than zero, after a user enters an amount

that is syntactically correct. If a less than zero bill pay amount is entered, it would pass the

rejectIfEmptyOrWhitespace validation, but not the following validation as shown in

Listing 5.12, which returns control to the bill pay form with an error message of “bill pay

amount must be > 0” displayed along with the amount field:

if (billPayment.getAmount() <= 0.0) {
 errors.rejectValue("amount", "invalid.billPayAmount",
 "bill pay amount must be > 0");
}

Table 5.3 lists some interesting test cases about how this validation works. As you can see,

this is a very simple, yet very powerful validation framework. You can consult

http://static.springsource.org/spring/docs/3.0.x/javadoc-api/org/springframework/validation/ to learn

more about how this framework works and what other Spring validation APIs are available

to meet your specific needs.

Listing 5.12 CreateBillPayValidator.java

package com.perfmath.spring.soba.service;
import org.springframework.security.core.context.SecurityContextHolder;
import org.springframework.security.core.userdetails.UserDetails;
import org.springframework.stereotype.Component;
import org.springframework.validation.ValidationUtils;
import org.springframework.validation.Validator;
import org.springframework.validation.Errors;

http://static.springsource.org/spring/docs/3.0.x/javadoc-api/org/springframework/validation/

CHAPTER 5: SPRING DATA ACCESS FRAMEWORK 103

import org.apache.commons.logging.Log;
import org.apache.commons.logging.LogFactory;
import com.perfmath.spring.soba.model.domain.BillPayment;
import com.perfmath.spring.soba.util.RandomID;
@Component
public class CreateBillPayValidator implements Validator {
 /** Logger for this class and subclasses */
 protected final Log logger = LogFactory.getLog(getClass());
 public boolean supports(Class clazz) {
 return BillPayment.class.isAssignableFrom(clazz);
 }
 public void validate(Object target, Errors errors) {
 BillPayment billPayment = (BillPayment) target;
 ValidationUtils.rejectIfEmptyOrWhitespace(errors, "amount",
 "required.amount", "amount is required.");
 if (billPayment.getAmount() <= 0.0) {
 errors.rejectValue (“amount”, "invalid.billPayAmount",

"bill pay amount must be > 0");
 }
 billPayment.setId(Long.parseLong(new RandomID(10).getId()));
 billPayment.setScheduleDate(new Timestamp(System.currentTimeMillis()));
 billPayment.setSendDate(new Timestamp(System.currentTimeMillis()));
 billPayment.setStatus("complete");
 }
}

Table 5.3 BillPayment form data validation on the amount attribute

Input Comment Result

1.a0 Letter/number mixed Error: invalid data

abc A string Error: invalid data

1 An integer Ok ($1.0 was paid)

empty

An empty string Error: invalid data/amount is required

“ “ A two-space string Error: invalid data/amount is required

1.0 1 A space b/t “0” and “1” Ok ($1.01 was paid with “ “ ignored)

1 0.1 A space b/t “1” and “0” Ok ($10.1 was paid with “ “ ignored)

10.0.1 Two dots Error: invalid data

0.0 Zero amount Error: bill pay amount must be > 0

-10.0 negative amount Error: bill pay amount must be > 0

104 DEVELOPING ENTERPRISE JAVA APPLICATIONS WITH SPRING: AN END-TO-END APPROACH

5.6.3 JSR-303 Bean Validation

JSR-303 bean validation is a spec about validating domain objects using Java annotations

under the package of javax.validation.constraints. For example, with the Payment

domain object shown in Listing 5.10, we could have added the following annotations of

@NotNull and @Size to add JSR-303 based validation to limit the length of a required

attribute of description:

…
Import javax.validation.constraints.NotNullNull;
Import javax.validation.constraints.Size;
…
@NotNull
@Size (min=2, max=50)
Private String description;
…

Both Spring and Hibernate validators support JSR-303 Bean Validation. However, make a

careful decision when choosing which validation mechanism to use with your application.

Your application will be less performing and scalable if you have double or even triple

validating implemented at all layers for the same validation. Also, keep in mind that it’s

hard to achieve the same finer granularity with PSR-303 as with Spring validation interface.

For example, it might be challenging to use JSR-303 to specify that an entry like “10.0.1” is

an invalid input for the amount attribute of the bill payment domain object as shown in

Table 5.3. Therefore, most of the time, Spring validation interface is a cleaner, more

efficient validation mechanism. In a word, try to avoid using JSR-303 bean validation

unless you can’t do without it.

5.7 SUMMARY

In this chapter, we explained how Spring Data Access Framework supports JDBC and

Hibernate data access methods. Real SOBA code examples were used to demonstrate the

key concepts and technologies associated with JDBC and Hibernate. We also covered the

Spring validation interface using the bill pay service. Since SOBA is a fully functioning,

integrated sample, you can explore more JDBC and Hibernate features as well as Spring

data validations using SOBA as your experimental platform.

The next chapter covers how RESTful Web Services is supported by Spring and applied to

SOBA. This is an interesting subject, since RESTful Web Services has become more and

more popular for building enterprise applications. Since the JDBC and Hibernate parts are

re-usable, they will not be repeated.

