Machine Learning
A Quantitative Approach

Henry H. Liu

g) PerfMath

2 DEVELOPING ENTERPRISE JAVA APPLICATIONS WITH SPRING: AN END-TO-END APPROACH

Copyright @2018 by Henry H. Liu. All rights reserved

The right of Henry H. Liu to be identified as author of this book has been asserted by him in accordance
with the Copyright, Designs and Patens Act 1988.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form or
by any means, electronic, mechanical, photocopying, recording, scanning, or otherwise, except as
permitted under Section 107 or 108 of the 1976 United States Copyright Act, without either the prior
written permission of the Publisher, or authorization through payment of the appropriate per-copy fee to
the Copyright Clearance Center, Inc., 222 Rosewood Drive, Danvers, MA 01923, (978) 750-8400, fax
(978) 750-4470, or on the web at www.copyright.com.

The contents in this book have been included for their instructional value. They have been tested with
care but are not guaranteed for any particular purpose. Neither the publisher nor author shall be liable for
any loss of profit or any other commercial damages, including but not limited to special, incidental,
consequential, or other damages.

ISBN-13: 978-1986487528
ISBN-10: 1986487520

10987654321
03232019

http://www.copyright.com/

1 Introduction to Machine
Learning

None

2 Machine Learning Fundamentals
Illustrated with Regression

4 MACHINE LEARNING: A QUANTITATIVE APPROACH

2.5 EVALUATING A MACHINE LEARNING MODEL

In this section, we discuss how a machine learning model like the linear regression model we have just
used can be evaluated. We start with the mathematical representation of the linear model, and then we
discuss what metrics should be used to evaluate the model. Let’s begin with the mathematical
representation of the linear regression model first next.

2.5.1 Mathematical representation of the linear regression model
The simplest linear regression model can be described mathematically as follows:
y(w, x) =w, + Z:Fl Wy x(M = FM_ oy x0m 2.1
where w = (wg, Wy, ..., W) is called a weight parameter vector, while x = (x@,...,x®™)) s called
an input variable vector or feature vector of dimension M, such as the features listed in Table 2.1 for our

fuel economy use case. Note that we added a constant value of 1 to the x vector so that we can include
w, into the right most sum of Eq. (2.1).

MACHINE LEARNING: A QUANTITATIVE APPROACH 5

In fact, when we say “linear,” we mean the function y(w,x) is a linear combination of the weight
parameters, not necessarily the feature variable x. We can actually rewrite Eq. (2.1) into the following
form using generic basis functions ¢, (x) of any form

y(w,x) =wy + ZM_ W, () (2.2)
Note that in Egs. (2.1) and (2.2), wy is called a bias or intercept, which is the value of y(w, x) when x or
basis functions are all zeroes.

The linear regression model optimizes the parameter vector by minimizing the residual sum of squares
(RSS) as defined below:

N
RSS =) (k) =)’ @3)

where y, is the n™ observed value of the variable y to be predicted, x,, = (x,x@, ..., x™)), the n"
data point or row value of the input variable x, and y(x,,) the value of the variable y predicted on x,,.

Next, we discuss the metrics used for evaluating the performance of the linear models we described
above in Eq. (2.2).
2.5.2 MSE, RMSE and R’ (coefficient of determination) as performance metrics

The mean squared error (MSE) is one of the most common metrics for evaluating the performance of a
machine learning model, including the linear regression model we discussed previously. It is defined as
follows:

1 1N
MSE = ZRSS = EZM("(I“) -¥)? (24)

i.e., the MSE is the mean of the residual sum of squares, also known as the square of the errors with the
error defined as follows:

€ = Y(Xn) = Yn (2.5)

Note that by taking the square of the error instead of just the error, the sign of the error is eliminated,
which does not matter in terms of minimizing the errors.

However, the MSE does not have the same dimension as the predictor y or the error, so most often the
root mean squared error (RMSE) is used in place of the MSE for evaluating the performance or
accuracy of a machine learning model:

1 N
RMSE = Jﬁ zm(y(xn) —Jn)? 2.6)

6

MACHINE LEARNING: A QUANTITATIVE APPROACH

Now, the RMSE has the same unit as the predictor, but still there is an issue here, that is, it is absolute
rather than relative. Ideally, we would like to use a metric that is normalized to the range of [0, 1] so that
we would know how far we were from hitting a perfect target. That is the metric of R’ (pronounced “R
squared”) as discussed next.

R? is formally termed the coefficient of determination. Its definition starts with the mean of the observed
data as shown below:

1N
Ymean = NZ":lyn (2.7)
Then, the total sum of squares is defined as the sum of squares of observed y, relative to y,.., as follows:

N
SStotar = Zn—l(yn _ymean)z (2.8)

Given the definition of the RSS in Eq. (2.3), the R’ (the coefficient of determination) is now:

SS,
2 oq o IS8
R 1 SSucar (2.9)

So if we can make a perfect fit so that the residual sum of squares reaches zero, then we will have R’ = 1.
Instead, if we came out with R = 0.15, for example, we would know that we were 85% away from a
perfect fit. Or in a more formal term, R’ is related to something called the fraction of variance
unexplained (FVU) as follows:

R’=1-FVU (2.10)
as the numerator of SS,,, in the second term of Eq. (2.9) is considered unexplained variance as the result

of model fitting errors. For this reason, R’ is a better measure for the accuracy or performance of a model
than MSE.

On the other hand, we can define the regression sum of squares, also called the explained sum of squares
as follows:

N
SSregression = Z 1(}’(xn) —}'mean)z (2.11)
n=

Note that both the total sum of squares SS,,,,; and regression sum of squares SS,.,..si0n are defined relative
to the mean of the sampled or observed predictor values. For simple linear regression models as defined
in Eq. (2.1), the following relationships hold:

RSS + Ssregres.rinn =5 Sslalal (212)

R2 = SSreyression = Ssregression/N (2.13)

Sstotal Sstotal/N

MACHINE LEARNING: A QUANTITATIVE APPROACH 7

2.6.3 L, and L, Norms
Given a vector x = (xy, ..., X,) in an n-dimensional space, the general definition of a p-norm is given by

n 1/p
lxl, = (Z |x.»|ﬂ) (215)

i=1
Now for p =1, we would have

8 MACHINE LEARNING: A QUANTITATIVE APPROACH

n
llxlly =)" fxd (2.16)
i=1

And for p =2, we would have

n 1/2
lxll, = (Z |xi|2) @17)
i=1

Eq. (2.16) is called 1-norm and Eq. (2.17) is called 2-norm. To explain what they mean, let’s use Figure
2.13, which shows two vectors (p, q) in an n-dimensional space. The 1-norm distance d; measures the
sum of the absolute distance of the two vectors in each dimension, namely, the two blue line segments,
as follows:

di(p.q) = |lp—qll, = 21 Ipi — ail (2.18)

The d, distance is also called taxicab distance, similar to how a taxicab drives through blocks in a city. It
is also known as rectilinear distance, L, distance or /, norm, city block distance, Manhattan distance.

A

v

Figure 2.13 Difference between L, distance (/, norm) and L, distance (/; norm).

The 2-norm distance d, measures the squared root of the sum of the squared difference of the two vectors
in each dimension, namely, the distance of the red line segment, as follows:

d, (. q) = |lp - qll; = Bk —q))"? (2.19)

The d, distance is also called Euclidean distance, which is the normal sense of the distance between two
points. Now if you compare Eq. (2.19) with Eq. (2.3), the squared > distance is just how RSS (residual
sum of squares) is defined.

It is important to understand that the higher the norm index, the larger the effects of large values.
Therefore, 2-norm distances are more sensitive to large-valued outliers than 1-norm distances. For this
reason, outlier detection machine learning algorithms may use higher-indexed norms. On the other hand,
if you want to minimize the effects of few outliers, instead of using the RMSE metric, you may consider
using the Mean Absolute Error (MAE) metric as defined below:

MACHINE LEARNING: A QUANTITATIVE APPROACH 9

N
1
MAE (00 =) IyGe) =l (2:20)
n=1
where N is the size of the sample data, y(x,) is the calculated value, and y, the observed value.

Almost all the machine learning algorithms strive to minimize the errors among observed and calculated
or predicted values, using one or another form of norm, as will be discussed with Ridge, LASSO and
Elastic Net regularization techniques.

As is shown in Figure 2.10, the fuel economy prediction curve becomes very irregular with the
polynomial degree of 8. This kind of phenomenon is known as overfitting as we mentioned earlier. With
every overfitting scenario, the underlying fact is that the model is trying to fit the noise of the data or
chase the pattern of the noise in the data, which apparently is not what the model is supposed to do and
may result in poor generalization of the model to future unseen data. Regularization has turned out to be
one of the effective measures for regulating overfitting. Next, we discuss three commonly used
techniques for combating overfitting: Ridge, LASSO (Least Absolute Shrinkage Selection Operator) and
Elastic Net regularizations.

Let’s begin with the Ridge regularization first next.
2.6.4 Ridge regularization

The Ridge regularization, also known as Tikhonov regularization, attempts to minimize the following
cost function:

Jw) = min|lwx - y||} + a|lwl|; (2.21)

where o is called a hyper-parameter, meaning that it’s not a model parameter such as w, and || w | is
called the /;, norm of the weight vector w, as discussed in the preceding section. As is seen, the first term
is just the RSS (residual sum of squares) as described in Eq. (2.3), while the second term, an /, term, is
what the Ridge regularization is about: It helps control the effect of the weight vector w. If a = 0, then
the effects of the Ridge regularization is zero; the larger the value of the o hyper-parameter, the larger
the effects of the Ridge regularization on overfitting. We demonstrate this with our fuel economy
machine learning project next.

10 MACHINE LEARNING: A QUANTITATIVE APPROACH

2.6.5 LASSO regularization

Now, let’s discuss the LASSO (Least Absolute Shrinkage Selection Operator) regularization. Instead of
adding an /, norm term, the LASSO regularization adds an /, norm term to the cost function as shown
below:

1
S ... a2
J(w) =min>o [lwx = yl|3 + a|lwl|, (2.23)

The general notion is that LASSO regularization forces certain coefficients to be set to zero by adding an
[} norm term to the cost function, which effectively forces choosing a simpler model that does not
include those coefficients, thus effectively suppresses overfitting. This is different from Ridge
regularization, which shrinks but does not set those coefficients to zero. Perhaps this is because /; norm

2.6.6 Elastic Net regularization

Now, let’s discuss the Elastic Net regularization. Instead of adding only an /; norm term like Ridge or
only an /, norm term like LASSO to the cost function, Elastic Net regularization adds both an /> norm
term and an /; norm term as shown below:

. 1 a(l-p)
JW) =mino |lwx = yl|7 + ————IwllZ + apllwll, (2.24)

As is seen, for p = 0, Elastic Net falls back to Ridge, while for p = 1, Elastic Net falls back to LASSO.
As we discussed in the previous section about LASSO, when there are multiple features correlated with
one another, LASSO tends to pick one of them. With Elastic Net, however, all correlated features will be
picked up. Therefore, in general, one should favor Elastic Net over LASSO.

Now we are ready to formulate the bias-variance trade-off using the above three parameters by following
a 3-step procedure as described in Bishop, 2006, Pattern Recognition and Machine Learning, p. 151:

= Compute the average prediction as follows:

L
1
) =7) yO) (226)
=1

= Compute the (bias)z as follows:
1 N
(bias)? = " (7(x) — hGx)Y: (2.27)
n=1

= Compute the variance as follows:

11y
variance = Nz ZZ{y(‘)(xn) - 7)) (2.28)
n=1 I=1

MACHINE LEARNING: A QUANTITATIVE APPROACH 11

3 Pattern Recognition with
Classification

None.

12 MACHINE LEARNING: A QUANTITATIVE APPROACH

4 Optimization and Search
Illustrated with Logistic
Regression

MACHINE LEARNING: A QUANTITATIVE APPROACH 13

Apparently, optimization is very important for machine learning, as the primary goal of a machine
learning task is to minimize the errors between target and predicted values or maximizing the likelihood
of a certain measure while getting it done as quickly as possible. However, let’s start with an abstract,
simple function as shown below, and see how we can find its minima as quickly as possible:

£(8) =05(82— 8,) +05(6, —1)? 4.1

Here, we can take & = (6,, 8,) as a vector with two components of &, 6,. This function, from (Aoki
1971, 106), has a global minimum of f (8) = 0 at & = @, = 1, as can be verified easily. However, it’s not
a convex function, as at the plane of & =0, f(6,) =0.56,” + 0.5 has a local minimum of 0.5 at &, = 0.

Next, let’s see how we can find its global minimum of f(8) =0 at &, = 6, = 1.
4.1.1 Optimization technique I: Batch gradient descent

By examining Figure 4.1, we notice that we would reach a minimum if we keep pushing along the
steepest slope, commonly known as gradient search or gradient descent. Since this function represents a
known distribution of f over a parameter space of (8, 8,), we can easily calculate its gradient vector of

g = (91. g,) as follows:
g=iE=2-0)0+@O,-1) @2
a
9:=55= 0.~ 6 (4.2b)

The step size for updating the parameters to get closer and closer to the minimum point step-by-step is
called learning rate, typically denoted with the Greek letter n, which is applied as follows from step k to
step k + 1:

Hi(ku) — 91_0:) - ng; (i=1,2) (4.3)

This is called line minimization or line search as the learning rate appears in a linear fashion in Eq. (4.3)

Next, let’s demonstrate how this gradient decent optimization technique works with this specific
example. Before we start, we need to consider a few things as listed below:

= Start point: We arbitrarily choose to start from &, = 0, &, =2.5.

= Learning rate: Let’s choose a fixed, constant learning rate of n = 0.2 to begin with.

= Stop criterion: Let’s choose € = 0.001 as the destination near the true convex, which is absolute 0.
We compare the absolute value of n|g, + g,| with € and stop if the former becomes smaller than the
latter, which means that the function has reached the bottom where gradients have become
approximately flat.

= Visualization: We want to draw a 2D contour plot first to show all concentric constant-value
contours, and then add the trace of how the global minimum is reached step-by-step.

14 MACHINE LEARNING: A QUANTITATIVE APPROACH

4.1.3 Learning scheduler

As is seen, learning rate plays a very important role in gradient descent optimization. Too small learning
rates may cause a delayed convergence to an optimum (minimum or maximum) while too large learning
rates may cause instabilities with reaching the final optimum. Therefore, very often a dynamic learning
schedule is desirable for a machine learning model training process. Learning scheduling is also referred
to as simulated annealing, similar to cooling down a molten metal in the process of annealing in
metallurgy.

In this section, we experiment with a simple learning scheduler composed as follows:

__
T=17% ak

(k=0,1,..) (4.4)

where 1, is the initial, constant learning rate, k the step counter starting from 0, and a a strength
parameter that controls how much impact the scheduler would apply. The above scheduler is
implemented in the script named gradient descent learning schedule.py, adapted from the
previous script of gradient descent stochastic.py.

4.1.4 Heavy ball method

The heavy ball method for mitigating the zig-zag behavior of gradient descent, described in (Bertsekas,
1999), works by adding a momentum term to the parameter search iteration as follows:

0k+1 = ak - ”kgk +ﬂk(0k - a(-—l) (0 < /lk < 1) (45)

That is, it adds the difference for the preceding step, with another parameter introduced to control the
impact of the momentum term. To see how effective that momentum term is, I modified the previous
script gradient descent learning schedule.py and renamed it gradient descent momentum.py,
with that momentum added while having SGD removed. Figure 4.5 shows the results from two runs, one
with p = 0.5 (left) and the other with p = 0.8 (right), respectively. As is seen, the efficacy with the heavy
ball method is huge with both p = 0.5, and p = 0.8, especially in the latter case that the zig-zag behavior
has been completed eliminated within the inner most contour.

Let’s understand how the conjugate gradient search works. We start by assuming that we want to use a
line search method to arrive at the optimal parameters set for a given optimization function f(0) as
follows:

f(8) =f(6+ ng) (4.6)

Here, we consider all 1D arrays as row vectors. Now let’s expand the above function using the Taylor
series expansion as follows:

MACHINE LEARNING: A QUANTITATIVE APPROACH 15

d

f(6+ ng)=~f(8)+ng (d”f(ﬂ + 'Ig)) Z

d2
+7y-gT(Wf(0+ ng)) +o (47)

=0

=0

Now, differentiating the above equation with respect to | would give us:

d
(E,f @+ ny)) =J(6)g" + ng"H(8)g (4.8)

where J(@) and H(@) are the Jacobian vector (all first order partial derivatives) and Hessian matrix (all
second order partial derivatives) of the parameter vector 6, respectively.

Setting the right hand side of the above equation to zero would give us:

J(6)g"
=g (4.9)
g'H(6)g
Now for the space (1), g), we update n first and then the parameter vector as follows:

Oks1 = O+ 1 G (4.10)

The gradient vector g can be updated by calculating a quantity expressed as Py, first using the following
formula known as the Fletcher-Reeves formula:

_J(6i1) (Gr)”
Pers =77 (801 @7 @i
Then we can calculate the new gradient vector as follows:
Ir+1 = ~J(hs1) — B k1) (6) (4.12)

The iteration stops when the following criterion is met:

99k < & (4.13)

16 MACHINE LEARNING: A QUANTITATIVE APPROACH

4.3.1 Logistic function

The logistic function, or logit function, is an S-shaped sigmoid function, often denoted as o (.), and is
expressed as follows:

oft) = (4.14)

1+ et
Figure 4.10 shows the above logit function, developed by statistician David Cox in 1958. As is seen, it
has some very interesting properties. For r = 0, its value is 0.5. For 7 < 0, its values are below 0.5,
whereas for 1 > 0, its values are above 0.5. This makes it suitable as a binary classifier, as we can just
take 1 = hy(x) = w'x, and if & (h(X)) < 0.5, we take it as vy =0 or False, and if o (h(X)) = 0.5, we take
itasy = | or True. Here, w and x are parameter and input vectors, respectively. This kind of delicacy can

CHAPTER 4: OPTIMIZATION AND SEARCH ILLUSTRATED WITH LOGISTIC REGRESSION 133

be further expressed mathematically as follows, using the conventional hat-notation, which means
estimated:

p=h,(x) = o(w'x) (4.15a)

{o, if p<05 (4.155)

1, if p=05

4.3.2 Cost function for logistic function

In order to optimize the logistic function based binary classifier, we need a cost function or loss function
for it. We might get some kind of heuristics by taking the inverse of the logistic function shown in Eq.
(4.15a) as follows:

wTx = log(p) — log(1 —p) (4.16)

MACHINE LEARNING: A QUANTITATIVE APPROACH 17

Based on the behavior of the —log(p) function and —log(1-p) function as shown in Figure 4.11, the
logistic regression cost function is known as log loss and is defined as follows:

N
Jw) = =) Iy log(p) + (1~ y)log(1 ~ py)] (417)

Note that we have to put y; and (1-y;) for those two log terms in Eq. (4.17), since y; is a binary variable
and takes either the value of 0 or 1. That way, those two terms in Eq. (4.17) would be isolated from each
other.

18 MACHINE LEARNING: A QUANTITATIVE APPROACH

4.3.5 Softmax regression

Softmax regression is just a generalization of the binary logistic regression to the multiclass or
multinomial logistic regression. The generalization is done by generalizing the fitting of w'x to

si(X) = Wi 'x (4.18)

where k represents the k™ class to be classified, and all parameter vectors (wy) would constitute a
parameter matrix W.

Now, the logistic probability for each class is normalized against all classes and takes the form of

P = A = s (4.19)

Since softmax is a multiclass classifier, its cost function takes the form of
1 .
JW) = = S XL Zke1 Yiilog(Br) (4.20)

Now, if we set K = 2 for two classes in the above equation, we would get exactly the same equation as
shown in Eq. (4.17) for the binary logistic regression model.

Since the Iris dataset has three species of flowers, we can try the softmax multiclass classification with it
and see how it would sort out those three different types of flowers. Since we want to see the decision
boundaries, we can choose two features a time for all three classes. Listing 4.4 shows the script named
logistic regression model softmax.py that achieves the above purpose. It works as follows:

= Since the fifth column of the Iris dataset is labeled literally, we need to convert all values for that
column into numerical numbers such as [0, 1, 2] corresponding to the three different specifies. This is
accomplished at line 4 using pandas’ DataFrame function of replace.
= Since we want to do multinomial classification, we have to set the multi class attribute to
“multinomial™ specifically as shown at line 8. In addition, not all solvers are supported for
multinomial classification, so we have to set a solver manually, such as “1bfgs” as shown at line 8.
Finally, note that the predict proba function at line 12 outputs probabilities corresponding to each
of all three classes, while the predict function at line 13 outputs the values for each instance, based
on the probabilities for each class. Listing 4.5 shows a partial output of these two functions to help
clarify further.

MACHINE LEARNING: A QUANTITATIVE APPROACH 19

4.4 KULLBACK-LEIBLER DIVERGENCE (CROSS ENTROPY)

When we talk about the logit or Softmax regression, we are actually comparing the probabilistic
distributions of different classes, where the largest probability is assigned to the class of the sample it
belongs to. In fact, there is a formal theoretical framework that defines the dissimilarity of the two
probability distributions, p and ¢, which is known as the Kullback Leibler divergence (KL divergence) or
relative entropy. The KL divergence is defined as follows:

K
P
ﬂmméEkJM%f (4.21)
- k

Here the two vertical bars mean w.r.r. (with respect to), and the symbol £ means “defined as.”
Obviously, if the two distributions p and ¢ are exactly the same at each data point, then the associated
KL divergence is zero.

What is interesting is that we can rewrite the above equation into the following form:
KL(pllq) = ZPKIOQ Pk~ Zpklog a=-H®P)+H /.9 (422)
k "

where H(p, q) is called the cross entropy, defined as:

HP.q) 2 —) pilogqy (4.23)
k

Now compare Eq. (4.23) with Eq. (4.17) in the case of binary classification. Since p = 1 — g, we see that
minimizing the loss for the logistic regression is equivalent to maximizing the cross entropy between the
two classes. This is why the logit and softmax regression models are also known as MaxEntropy models.

5 Rule-Based Learning: Decision
Trees

20 MACHINE LEARNING: A QUANTITATIVE APPROACH

He assumed that a collection C (or in our modern term, a dataset) contains p objects of class P and n
objects of class N, then:

1. Any correct decision tree for C will classify objects in the same proportion as their representation
in C. An arbitrary object will be determined to belong to class P with probability p/(p + n) and to
class N with probability n/(p + n). This is equal to saying that it’s probability based, similar to the
logic regression we discussed in the previous chapter, but he did not use logistic function at all;
otherwise, his systems would not be referred to as “decision trees.”

2. When a decision tree is used to classify an object, it returns a class. A decision tree can thus be
regarded as a source of a message ‘P’ or ‘N’, with the expected information needed to generate
this message given by

p p n
I(p,n) = — l - l
(®.m) pt+n 092p+n p+n0‘q

5.1
= (5.1)

Next, he detailed his algorithm for building a decision tree that begins with an attribute, say A, as the
root of a decision tree, which has a set of values {A|, A,, ..., Aj, ..., A,}. Then, C will be partitioned into
{C), Cy, ..., Cy, ..., C} where C; contains those objects in C that have value A; of A. Once again,
assuming C; contains p; objects of class P and n; of class N, the expected information required for the
sub-tree for C; is I(pj, n;). The expected information required for the tree with A as root is then obtained
as the weighted average

|4
E(A) = Z%l(pi,no (5.2)
i=1

where the weight for the i branch is the proportion of the objects in C that belong to C;. The information
gained by branching on A is therefore

gain(A) = 1(p,n) — E(A) (5.3)

5.2.1 Gini impurity

The Gini impurity is a measure of the impurity of a binary tree node in terms of the proportions of the
other classes against the total number of samples represented by that node. It is defined as follows:

K
Gi=1-) P (54)
k=1

where p;y is the portion of the other classes relative to the class that node i represents. Let’s use an
example to help explain. Let’s say we are dealing with a classification problem that has three classes of
[C), Cy, G;). Let node i represent class C,. The samples assigned to this node are [0, 90, 10]. Then the
Gini impurity for this node is (0 + 10)/(0 + 90 + 10) = 0.1, e.g., only 10% of samples in this node are
non-C, classes.

MACHINE LEARNING: A QUANTITATIVE APPROACH 21

However, we want to use a program to help us divide the input space. We give the program both the data
and the Gini impurity measure as the guide line that we would want to split the nodes by minimizing the
Gini impurity for a node until it had bottomed to a leaf node. Specifically, with the Gini impurity defined
quantitatively in Eq. (5.4), we can now define the loss or cost function for a node. It is defined as
follows:

Jxu7(xi)) = PieseGrese + Pright Grigne (5.5)

where x; is an attribute, r(x;) is a rule defined with a condition like x; < const, pi.q and pyig, are the sample
ratios for left node and right node, respectively, with pies + prigy = 1, and Gy and Giig, are the Gini
impurities for the left node and right node, respectively. The pair (x;, 7(x;)) seems to be the key to
inducing rule by data, while the right-hand side of Eq. (5.5) just works for the left hand. This now
becomes a standard optimization and search problem, which may vary from implementation to
implementation.

Next, let’s check the entropy and Gini impurity numbers shown in Figure 5.2. Let’s look at the left chart
for the entropy number of 1.0 in the middle white box first. According to Eq. (5.1), we have the entropy
atnode / defined as

H—EK: z __0, 0 5 5 5 5 _
(7T L PutodzPuc= T 100 92700 ~ 100 92100 ~ 100 92100 ~

Then, according to Eq. (5.4), the Gini impurity for the same middle white box node in Figure 5.2 is
K
0* (50* [50)?
A — — 2 = —_ | — —_ | — —_| — =
=1 kz; Pix=1 (100) (100) (100) o

Both the entropy number and the Gini impurity number we arrived at match the corresponding numbers
shown in the middle white boxes of Figure 5.2.

22 MACHINE LEARNING: A QUANTITATIVE APPROACH

6 Instance-Based Learning: Support
Vector Machines

MACHINE LEARNING: A QUANTITATIVE APPROACH 23

y=wx+b 6.1)

where w may represent a rotation while b may represent a translation.

Now for a binary classifier, we can define two lines, one by w'x + b= 1, and the other by w'x + b =—1.
We could have used w'x + b= +c instead of w'x + b= +1, but it doesn’t matter, because we can always
scale input to make ¢ = 1. We now have the conditions for the support vectors as follows:

wix,, + b=1, one class

support vectors: {
PP wlx,, + b=-1, theotherclass

(6.2)

We can take y = 0 for one class and y = 1 for the other class, accordingly. Note that we have made an
assumption that we are dealing with a 2D input space. For a more generic case, such as in an n-
dimensional input space, the support vectors will lie on a (n—1)-dimensional hyper-plane or hyper-
surface.

Now let’s look at the implication of the following condition:
wix+b =0 (6.3)

The above condition defines the center line that satisfies the w'x, ,+ b = =1 conditions. Therefore, w is a
normal vector to the hyper-plane. Since in geometry, a normal is an object such as a line or vector that is
perpendicular to a given object, the parameter b/||w|| determines the offset of the support vector hyper-
planes, and it is in fact half of the distance between the two supporting hyper-planes. Now from the cost
or loss perspective, we would always like to maximize that distance, or minimize |w||, since that
distance, which is also called margin, is inversely proportional to ||w||. This tells us how we can abstract
linear SVM classification as an optimization problem, namely,

1
minimize= wTw (6.4)
w,b 2
subject to
yiw' -x+b)=1, (i =1,2 for a binary classifier) (6.5)

Egs. (6.4) and (6.5) define a quadratic programming problem, which is elaborated more next.

24

MACHINE LEARNING: A QUANTITATIVE APPROACH

6.1.4 Hard margins versus software margins: The primal problem

Eqgs. (6.4) and (6.5) define hard margins for a linearly separable dataset, where it is possible to find
margin support lines, within which there would be no instances. Such margins are called hard margins.
When a dataset is not linearly separable, we have to allow some instances to fall within the two margin
lines. In such cases, margins become soff margins in the sense that they only approximate the boundaries
for the classified classes. A soft margin problem is said to be a primal problem, defined by the following
optimization problem (http://scikit-learn.org/stable/modules/svm.html#svm-classification) :

N
1
PR
mmzw w+CZICi (6.6)
i=

subject toy,(Wx; +b)21—-¢, (20, i=1,..,N (6.7)

Here, each symbol is defined as follows:

= x; is a binary training vector in two classes in a dataset of size N;

= y; is a binary target variable;

* ¢ (pronounced zeta-i) is a so-called slack variable for each instance that measures how much the
instance is allowed to penetrate across the margin line toward the other side;

= C is a hyper-parameter that further adjusts the effect of the slack variable &.

In fact, x; in Eq. (6.7) can be replaced with a more generic function ¢ (x;), which would result in a whole
chain of kernel functions that can be used to solve non-linear classification problems with SVM. This
will be further explained when we discuss the derived dual problems in the section of nonlinear SVMs.

Another term known as the hinge loss function is introduced to cope with non-linearly separable
datasets, as discussed next.

6.1.5 Hinge loss functions

To classify non-linearly separable datasets with the linear SVM models, the following hinge loss
function is introduced:

fringe = max(0,1— y;(w" - x + b)) (6.8)

The above hinge function implies that if the constraint expressed in Eq. (6.5) is satisfied, that is, all
instances for that class lie on the correct side of the margin, then the hinge function will be zero. For
those instances on the wrong side of the margin, the hinge function’s value is proportional to the distance
from the margin.

MACHINE LEARNING: A QUANTITATIVE APPROACH 25

Taken the hinge loss function into account, the cost function now takes the form of

N
Jw) = iwTw+ %Z max(0,1—y;(w" -x + b)) |, (6.9)

i=1

where the parameter A determines the degree of the soft margin that may contain instances of non-
linearly separable classes. On the other hand, the parameter A acts like a regularization parameter that
can be used to control the margin width proportional to w'w, as we will see next with an example.

6.3 NONLINEAR SVMS

From the previous examples, we see that margin lines are all straight lines. When the boundaries that
separate two different classes are curved or nonlinear, the linear SVC model we discussed would no
longer work. We have to seek new approaches to solving non-linear boundary problems. And the keys
are with the definition of the dual problem and the concept of kernels, as discussed next.

6.3.1 Lagrangian dual problem
Now let’s rewrite the hard margin optimization problem expressed in Eqs. (6.4) and (6.5) as follows:
minimize— w'w,
w,b 2

subject to

ywh-x+b)—120, (i=1,2,..,N)

26 MACHINE LEARNING: A QUANTITATIVE APPROACH

As is seen, we just re-arranged the second equation by moving 1" over to the left of the = sign. Now,
this can easily be arranged into an optimization problem, using the Karush-Kuhn-Tucker (KKT)
multipliers, as follows:

N
1
L(w,b, 1) = 2 wiw — z;ft.[y'(w]r ‘x+b)—1], (6.10)
i=1

subject to H; 2 0fori=1,2,..,N (6.11)

Now the original condition has become part of the function (L) to be optimized with the constraints that
all its coefficients () must be > 0, where the subscript i denotes the i" instance of the data.

Next, to minimize L in Eq. (6.10), we can take the partial derivatives of L against w and b and set them to
zero, which would give us:

N
W= ZFi YiX; (6.12)
i=1
N
with Zpi yi=0 (6.13)
i=1

For support vectors, the condition y;(w” - x + b) — 1 = 0 holds true, so b can be estimated by averaging
over all support vectors as:

N

_1 (T

b= ;[1 y (T -)} (6.14)
>0

Now by substituting Eq. (6.12) for w and (6.14) for b back into Eq. (6.10), we have:

1 m m m
L(W,b,u) = 3 Z#i#;‘yl‘)’j(ﬂ X)) = ZFE (6.15)
i=1 j=1 i=1
with u;2 0 (i=1,2,..,m)

Eq. (6.15) is the dual problem of the original primal problem expressed in Eq. (6.4).

MACHINE LEARNING: A QUANTITATIVE APPROACH 27

By inspecting Eq. (6.15), we see the term (x] - x;) at its core, double multiplied by the target values
(¥:y;) and KKT multipliers (4;u;), and summed twice. That term is called a kernel, which is an inner
product of two vectors. Now, suppose we want to fit a boundary with a second degree polynomial, then,
we can just use the second degree polynomial kernel of (x7 * X;) %in Eq. (6.15). This is the so called
kernel trick, as we do not have to transform the input variables first and then combine their polynomial
terms — everything we need is already given to us by that inner product of the two vectors. Furthermore,
we can generalize the above kernel into a more generic form of:

k(x,x) = ¢ (x) - f(x") (6.16)

Here, we care more about the inner product of the function ¢ with its transpose more than the actual form
of the function ¢ itself. A few more commonly used kernel functions are shown in Table 6.1, such as
linear, polynomial, Gaussian radial base function and sigmoid. Each of these functions maps a problem
from its original input space to a new space, where non-separable data in the original space may become
separable in the new space.

Table 6.1 Commonly used kernel functions

Kernel Function k(x,x')
Linear k(x,x')=xT-x'
Polynomial k(x,x') = (a”-x' +)"
Gaussian radial base function (RBF) k(x,x') = exp(—y||x — x'|])?
Sigmoid k(x,x') = tanh(x" - x' +¢)

In addition, if we take x as the training instances and x’ as unseen new instances, then a kernel function
essentially measures the proximity of a new instance to the training instances, which allows us to make
predictions on the unseen new instances. This is different from the parametric paradigm of machine
learning that once a model is trained, the training data used to train the model are discarded. Because of
this, SVMs belong to the instance-based machine-learning paradigm.

So what is a positive definite kernel? Its generic definition is as follows:

Let X = {x;, x5, ..., x,} be a non-empty sample set. A symmetric function k (x;, x;) is called a positive
definite (p.d.) kernel on X if the following relation holds true for any {x,, x,, ..., x,} and {g, 1o, ..., i, }:

n

Z it k(x5 ;) 2 0 (6.17)

n
=1 j=1

This theorem explains why linear SVMs can solve nonlinear problems with the help of kernels.

Next, let’s use an example to help illustrate how SVM nonlinear models work.

28 MACHINE LEARNING: A QUANTITATIVE APPROACH

7 Random Forests and Ensemble
Learning

7.4.1 Hard voting versus soft voting

Hard voting is essentially a majority voting mechanism. Let’s use the MNIST dataset as an example. If
we use n individual classifiers and more than half of them predict a hand-written digit as, say, “9”, then
that digit is taken as “9”. In case it is a tie, then it’s broken more or less arbitrarily, such as by making a
decision based on the ascending sort order. For example, if half of the classifiers say a hand-written digit
is a “4” and the other half say it’s a “9”, then it is assigned as a “4”, as “4” is ahead of *9” in the
ascending sort order.

On the other hand, soft voting uses the weighted average probability to decide the class of an instance, or
mathematically, it is decided as follows:

n
Cx = argmaxz wip; (7.1)
k4
=1

Here, w; and p; are the weight and probability of an instance associated with each classifier, respectively,
and ¢, is the class that has the largest value of the weighted average from all classifiers.

MACHINE LEARNING: A QUANTITATIVE APPROACH 29

8 Dimensionality Reduction

8.1.1 Eigenvalues and eigenvectors

Eigenvalues and eigenvectors are foundational mathematical concepts for understanding principal
component analysis (PCA) and thus dimensionality reduction. Therefore, this section briefly covers these
two concepts instead of jumping to PCA immediately. However, if you find that the coverage here is not
sufficient enough, please feel free to augment it by looking up more formal, detailed texts.

First, we start with the concept of transformation, which means applying some kind of operations so that
the original entity is transformed into another form that is different from the original. Let’s say we have a
vector v, which is transformed by an abstract function 7 in the following form:

T(w) = v, (8.1)

where v is known as a vector and A is a scalar, which has a few different names such as the eigenvalue,
characteristic value, or characteristic root associated with the eigenvector v. Apparently, this is a linear
transformation since the original vector v is transformed into itself with a constant A.

30 MACHINE LEARNING: A QUANTITATIVE APPROACH

Now we want to get more specific about the transformation 7. Since we want to deal with high-
dimensional data, let’s assume that T represents a matrix X so that

Xv=Av (8.2)

Of course, in this case, the dimensions of X and v must match with each other, namely, the second
dimension of X must be the same as the dimension of v, e.g., (mxn) and (n) for X and v, respectively.
Since v is an eigenvector as we explained with Eq. (8.1), the above Eq. (8.2) is known as the eigenvalue
equation for the matrix X.

Now, we can rewrite Eq. (8.2) as
X-ADhv=0 (8.3)

where I is an identity matrix that has 1’s for all its diagonal elements and 0’s for its off-diagonal
elements.

Next, what are the solutions to Eq. (8.3)? The mathematician Gottfried Wilhelm Leibniz had given us the
answer more than 350 years ago, that is, Eq. (8.3) has a non-zero solution v if and only if the determinant
of the matrix (X — AI) is zero, or

X -l = (4 - D= ..(dy =D =0 (8.4)

where those linear factors in the middle are called the characteristic polynomial of X, with the numbers
A1, A2, ..., Ay called the roots of the polynomial and the eigenvalues of X, which may be real but in
general complex numbers.

So why are we so interested in those eigenvalues and eigenvectors? That’s because we want to simplify
our matrices into something that we can understand more easily. Then, what is the simplest form of a
matrix? The answer is that diagonalized matrices are the simplest form we can have, as such matrices
have all zeros except the diagonal elements, as discussed next.

8.1.2 Matrix diagonalization

Equipped with the knowledge of eigenvalues and eigenvectors, now we can easily understand how to
diagonalize a matrix. Suppose a matrix X has n linearly independent eigenvectors vy, v,, ..., v, with
associated eigenvalues Ay, A, ..., Ay, where those eigenvalues do not need to be distinct, we can define a
square matrix with those eigenvectors as follows:

V=1[v, v, .. v, (8.5)

Since the eigenvectors as the column vectors of V are linearly independent, V is invertible, which leads
to:

VXV = A (8.6)

MACHINE LEARNING: A QUANTITATIVE APPROACH 31

where A is a diagonal matrix. This diagonalization is also called eigen-decomposition and a similarity
transformation as it is a linear transformation in nature. In a more formal term, X and Arepresent the
same linear transform expressed in two different bases. On the other hand, not all matrices are
diagonalizable. If a matrix is not diagonalizable, it is said to be defective.

Next, we discuss matrix diagonalization applied to the singular value decomposition, which is one of the
main methods for extracting principal components for PCA.

8.1.3 Singular value decomposition (SVD) theorem

For any finite-dimensional mxn real or complex matrix X, the singular value decomposition (SVD)
theorem states that we can factorize the matrix X into the following form:

X = Unsm ZmnVin 8.7
where U and V are unitary orthogonal matrices and satisfy the following conditions:
U'U =10 and V'V =1,,, (8.8)

The columns of U are the left singular vectors, ¥ has the same dimension as X and has singular values
lying on the diagonal in descending order, and V" has rows that are the right singular vectors. You might
wonder what singular values are. This question can be answered by calculating X7 X as follows:

XTX = (VIUT)(UIVT) = VEUTU)VT = VEVT (8.9)

Therefore, we have

JXTX = |31 (8.10)

which means that the singular values are simply the absolute values of the eigenvalues. Now the
concepts of eigenvalues and diagonalization are unified in the single framework of the singular value
decomposition as shown above.

The above equations also show how to diagonalize a matrix X. One can follow the below procedure:

* The left singular vectors as the column vectors of U are made up by the eigenvectors of XX
= The right singular vectors as the column vectors of V are made up by the eigenvectors of X7 X.
= The singular values in the diagonal matrix X are square roots of eigenvalues of XXTor X7 X.

From a geometric point of view, in fact, U and V represent rotations while X'represents a scaling so that
2'is also known as a scaling matrix, where scaling is applied along each axis by the amount determined
by each of the singular values lying on the diagonal. This is why the SVD is so helpful for PCA, as
discussed next.

32 MACHINE LEARNING: A QUANTITATIVE APPROACH

Given Eq. (8.7), we can calculate a metric known as the score matrix § as follows:
S=XV=Ux"V=UX (8.11)

where the score matrix § has the same dimension of mxn as the data matrix X. However, what’s different
is that each column of § is given by a corresponding left singular vector of X multiplied by the
corresponding singular value of the diagonal matrix £, both of which are known by the SVD procedure
we detailed above. Since the singular values of X lie on the diagonal in descending order and the
eigenvectors of U are orthonormal to each other, we can truncate the score matrix § by keeping only the
first / largest singular values and corresponding singular vectors to have a truncated score matrix §; as
follows:

S =Ux, =XV, (8.12)

The components of S; correspond to the first / principal components of X in descending order, which are
uncorrelated with each other as explained next.

8.1.5 Principal components analysis (PCA) versus covariance matrix

The covariance matrix C of the data matrix X is proportional to the components of STS of its score
matrix S, and the covariance between the two principal components, PC; and PCy, are defined as
follows:

c(PCPC)xcSTS = (Xv)) (Xvy) = vTXTXvy = v)T Ay = gy vy (8.13)

Since the eigenvectors of V are orthogonal with each other for j#k, the covariance between two different
principal components shown in Eq. (8.13) is equal to zero; thus, there is no covariance between different
principal components in the transformed space for the dataset, or in other words, the correlation or
collinearity among different features have been removed after the transformation. This important
property allows us to examine the variance projected onto each principal axis, which is another method
to PCA, as discussed next.

8.1.6 Principal component analysis (PCA) by maximizing variance

The more formal, generic description for PCA is that PCA maps data linearly from higher dimension to
lower dimension by maximizing the variance of the data along axes in lower dimensional subspace. In
addition to the SVD procedure outlined in the previous section, it can also be achieved by constructing
the covariance matrix of the data and computing the eigen vectors on the covariance matrix as mentioned
above. The eigen vectors having the largest eigen values preserve the largest fraction of the variance of
the original data, which makes them more effective and more efficient than the original entire dataset.

Now, let’s see how we can put the above notions into a formal, quantitative framework mathematically.
Let’s say we want to project a data matrix X onto an orthogonal set of unitary vector basis of (v, vs, ...,

MACHINE LEARNING: A QUANTITATIVE APPROACH 33

v,), and we call the projected components as principal components, with principal component scores
defined as the dot product of x; and v, similar to Eq. (8.11), as follows:

Ski = Xi " Vg (8.14)

where k represents the " principal component and i the i instance of the dataset. Here the principal
component score s;; apparently represents the variance of data out of a single instance projected on to a
particular principal axis. Note that here we do not assume that we already know those principal axes.
Instead, we want to find out the first and the largest principal component aggregated from the entire
dataset, i.e.,

v, =arg max[z sf_;-] =arg max[Z(xl- . v)z} =arg max{vT X7 Xv} (8.15)
- II - [
L L

[lvll=1 vll=1 vll=1

Since this is the first principal component, it represents the largest principal component or the largest
variance obtained with the given argmax condition.

For the subsequent principal components, first, we need to subtract the k — 1 principal components from
the entire matrix X as follows:

k-1
£ =X— Zijva (8.16)
=1

Then, we can find the X component, which extracts the maximum variance from the above new data
matrix as follows

v, = arg max {vT)?kT)?kv} (8.17)
llvli=1

Now, we have obtained all components v, and the full principal component matrix can be obtained with
Eq. (8.14), which is the same as Eq. (8.11) obtained with the SVD. We can do the same dimensionality
reduction as shown in Eq. (8.12).

This completes our theoretical coverage of PCA. I hope it is clear enough for you to follow. This
coverage is provided based on my belief that it’s always clearer and less ambiguous if we use math to
understand the subjects we are interested in. If it turns out that it is not so easy, you can just remember
that PCA decomposes a data matrix into a series of uncorrelated principal components lying on the
diagonal in descending order. We don’t need to do any matrix decomposition ourselves anyway, as such
tasks are already standardized with various libraries such as the sklearn, as discussed next.

34 MACHINE LEARNING: A QUANTITATIVE APPROACH

As the authors pointed out, the LLE differs from some of the previous methods such as the
multidimensional scaling (MDS) and Isomap, which all compute embeddings that attempt to preserve
pairwise distances: LLE recovers global nonlinear structure from locally linear fits. The key notion here
is the locally linear patch of the manifold. The authors gave a method for how to reconstruct each data
point on such patches by minimizing the reconstruction errors as a squared residual from the data point
to its neighbors, which adds up the squared distances between all data points and their reconstructions as

follows:
{W) = z |)?i - Z Wy X;
- j
4

2
(8.18)

MACHINE LEARNING: A QUANTITATIVE APPROACH 35

9 Introduction to Artificial Neural
Networks

Let ¢; be any neuron with a threshold B> 0, and let ¢;; , ciz, . . . , ¢, have respectively n;;, njp, . . ., ny,
excitatory synapses upon it. Let ¢j; , ¢j, . . ., ¢j, have inhibitory synapses upon it. Let k; be the set of the
subclasses of {n;;, nj, .. ., nj,} such that the sum of their members exceeds 6. We shall then be able to
write the action N; as follows, in accordance with the assumptions mentioned above:

N(z).=.5 li[N (21) - Z HN,.S(Z,) , 9.1)
m=1 ack; Sea

where the “Z” and “[]”symbols are syntactical symbols for disjunctions (equivalent to logical OR) and
conjunctions (equivalent to logical AND), respectively, which are finite in each case.

36 MACHINE LEARNING: A QUANTITATIVE APPROACH

Now given that N in Eq. (9.1) represents action, we read from right to left as follows:

= First we do a logical AND (the right-most []) for all actions of each subclass member;

= Then we do a logical OR (Z) for all outputs from the above step;

= Then we negate each inhibitory synapse’s action and do a logical AND (the left-most []) with all of
them;

= Finally, we get the action for the neuron by applying functor S.

McCulloch and Pitts came up with 12 configurations (let’s call them basic units) for implementing their
nets. Figure 9.1 shows the first four of them, which correspond to: (a) a pass-through (or an identity
operation), (b) a logical OR that if at least one is on then the output is on, (c) a logical AND that the
output is on only if both are on, and (d) a logical AND of the first neuron and the negation of the second
neuron that is equivalent to the logical expression of (§,"~S,), which means that the output is on only if
one input is on and the other input is off.

However, 1 am most impressed by his quantitative formulation that the weight between two neurons
increases if both activate simultaneously, and reduces if they activate separately. Furthermore, nodes that
tend to be either both positive or both negative at the same time have strong positive weights, while those
that tend to be opposite have strong negative weights. This seems to be already explained in the
propositional logic that McCulloch and Pitts developed in 1943 as excitatory and inhibitory synapses, as
shown in Figure 9.1. However, what was missing in 1943, as I mentioned at the end of the preceding
section, is the following:

wij = xixj (92)

So, given what you have learnt from part I of the text, you should have guessed what Eq. (9.2) is about.
This equation describes the weight w;; from neuron j to neuron i, which have their inputs of x; and x;,
respectively. This is considered pattern learning, since the weights are updated after every experience or
training example. There are two special cases here: (1) wy = 0 if i = j, which is called no reflexive
connection condition, and (2) w;; = 1 if the connected neurons have the same activation for a pattern with
binary neurons that have activations of 0 or 1 as is the case with the logical calculus developed by
McCulloch and Pitts in 1943,

MACHINE LEARNING: A QUANTITATIVE APPROACH 37

n
1
Wy ==)Xo Ty 93)

k=1

where wj; is the weight averaged over all learning experiences or training samples.

In literature, the Hebb learning is also generalized to so-called linear neurons as:
y= Z wj X; (9.9)
Jj
where y is the postsynaptic response. Or, in another form that formulates the change in the i synaptic
weight w;:
Aw; = nx;y (9.5)
where 1 is the learning rate.

First, an XOR operator gives a frue output if one, and only one, of the inputs is true. This is demonstrated
with Table 9.1 below. The other way to state an XOR operator is that the output is true if and only if the
sum of the inputs is odd; or if the sum of the inputs is even, then the output is false. Thus, for A=B =0
or0+0=0and A=B=1or1+ 1= 2, the output would be false, which explains why it is called
exclusive OR.

On the other hand, an XOR operator can be defined as:

XOR=AB+BA=(A+B)A+B)=(A+B)(A+B) (9.6)

38 MACHINE LEARNING: A QUANTITATIVE APPROACH

9.2.1 single layer perceptron network model

By examining Figure 9.3, Rosenblatt’s perceptron configuration is a single layer perceptron in the
sequence of the source (S), A-units and R-units, where the source represents stimuli or inputs (x;), the A-
units serve as the source sets for the R-units by passing inputs they receive from the source to the R-
units, and the R-units generate outputs by filtering activations. This whole process can be formulated by
the following two equations:

m
a; = Z WjiX; + Wjp (9.7)
i=1
and
m
1 = heaviside(a;) = heaviside(z WjiX; + Wig) (9.8)

i=1

In Eq. (9.7), x; represents the i input variable from the ™ A-unit, wj is the connection weight parameter
on the / R-unit between the /” R-unit and the i™ A-unit, wj, is called the bias, and q;is the activation
arrived at the /" R-unit.

Eq. (9.8) is a Heaviside function, representing the response or output at the / R-unit, in the form:

0, ifz<0

heaviside(z) = [1 if 2> 0

(9.9)

MACHINE LEARNING: A QUANTITATIVE APPROACH 39

Now learning lies with how to update the weight parameters wj; to correct wrong responses. Let’s say the
correct response for an input value of x; is #;, and the machine’s response is r;. Then, the error can be
denoted as

a=n-t (9.10)

Since this is supervised learning, the error would be zero if the response were the same as the known
target value for the input in question. If the response were wrong, we would want to correct the
connection weight parameter by reinforcing it with a change proportional to the error by the following
amount

where 1 is the learning rate as we already learnt from part I of this text. Let’s say the correct response #; =
1, and the machine’s response r; is indeed 1, then there is no need to correct or reinforce the connection
weight parameter w; and Eq. (9.11) indeed gives 0. Now if the machine’s response r; is 0, instead, which
is smaller than the correct response #;= 1, then Eq. (9.11) would give a positive amount equal to n, which
would be added to the connection weight parameter w;; for the next training. This is how the connection
weight parameter is reinforced. Similarly, if the correct response #; = 0, and the machine’s response r; is
1, then Eq. (9.11) would give a negative amount equal to -1, which would be subtracted from the
connection weight parameter w; for the next training. As you see, the key to understanding machine
learning is to understand how connection weight parameters are forced to move toward the direction of
smaller and smaller errors against the target values. Therefore, the number of training instances, the
number of training iterations, and the learning rate all matter.

40 MACHINE LEARNING: A QUANTITATIVE APPROACH

Now, compare this with Rosenblatt’s perceptron as shown in Figure 9.3, we notice one obvious
difference, which is the hidden layer. This is a very important differentiation, as we can even have more
than one hidden layer. Besides, we can express it differently by generalizing and combining Eq. (9.7)
and (9.8) into:

n m
2 1 1 2
e w) = f Zw,ﬁf.)fl [wai xi+ wd |+ w® (9.12)
j=1 i=1

We need to read the above equation inside out, which corresponds to the sequence of from left to right in
Figure 9.8. We introduced two generic activation functions, f; and f>, which used to be the Heaviside
function in Rosenblatt’s perceptron model. The forms of these two functions are not important here: all
we need to know is that they are non-linear, differentiable functions, which is equal to saying that
artificial neural networks are nonlinear, or linear artificial neural networks are rarely useful.

On the other hand, we can absorb the bias terms into the two sums, and re-write Eq. (9.12) into:

n m
yelew) = f,1 D wf; [Zw,&”xf] . (9.13)
=0 =0

MACHINE LEARNING: A QUANTITATIVE APPROACH 41

9.2.3 Error backpropagation algorithm

If there is one machine learning algorithm that you really need to understand well, what would it be? 1
would recommend the error backpropagation algorithm. This algorithm is considered one of the turning
points for machine learning. Therefore, in this section, I’d like to help you understand it with an end-to-
end mathematical derivation, which is really not that difficult.

We start by stating that machine learning is to some extent a trial-by-error business. It doesn’t matter that
initially the outcomes are far off. The importance is that a machine can learn from its mistakes by
correcting the errors it has made and reduce the errors iteratively.

Now let’s say we are dealing with a parametric nonlinear feed-forward network as discussed previously.
Let’s further state that we want to examine the errors that a machine makes at a particular step and
assume that the total error E(w, x) from all data points or examples or instances or features is defined by:

E(w,x) = Z E,w,x,), (9.14)

where E, (w, x,,) is the error from an arbitrary data point x,,. Let’s look at the error at the last step of the
output since that’s when we know the error when the machine gives a prediction, right or wrong. Assume
that the target value at the ¥ output unit is 7,4, and the predicted value is y,; corresponding to a prior
hidden unit z,;, then we can write the error function as

1
En =5 nic = tu)?, 9.15)

where the predicted value y,; = y,(x,,w). The gradient of the error function expressed by Eq. (9.15)
with respect to an arbitrary connection weight coefficient (hidden unit or output unit) would be:

JdE Yo
=~ = (ynk = tu) # = (ynk — ok) Xnis (9.16)
ki

awk i
where we have assumed a linear dependence between y,; and wy; as follows:

Yk = Wik Xk 9.17)

42 MACHINE LEARNING: A QUANTITATIVE APPROACH

Since each unit computes an activation, similar to Eq. (9.7), we can define the activation at the K" unit as
G =) waz, (9.18)
T

where we consider z the input from a hidden unit to the k" unit in question to be generic. We also learnt
from the previous section that an activation such as the one shown in Eq. (9.18) is transformed by a
nonlinear function, say, f(.), so that we have:

z = f(ay). (9-19)

This part is called forward propagation in the sense that the i-unit is prior to the k-unit and wy, is the
connection weight from the i-unit to the k-unit, and that we compute the activation a; and apply the
transformation at the k-unit according to Eqgs. (9.18) and (9.19), respectively.

Now we can examine how to calculate the error gradient with respect to the activation a; as expressed in
Eq. (9.18). We start with Eq. (9.16) again, and we would have:

9E, 9OE, da,
wy, da, dwy

(9.20)

For convenience, we denote the first term on the right-hand-side of Eq. (9.20) with a single symbol as

D

E,
da;’

o (9.21)

The second term on the right-hand-side of Eq. (9.20) turns to be just as simple as, according to Eq.
(9.18):

aak

m =z. (9.20)

Now Eq. (9.20) can be re-written as:

- = 5z (9.22)

. OE . .
Now the error gradient m:!depends on how to compute &,. If the output y, = a, i.e., no nonlinear

transformation is applied to the activation or it is simply an identity function of y; = a;, then, J is just

the error:

% = Yi— tio (9.23)

MACHINE LEARNING: A QUANTITATIVE APPROACH 43

which is why 8’s are referred to as errors. However, if the output activation function is nonlinear, such
as:

Vi = al(ay), (9.24)

Then, Eq. (9.23) would be:

G = Ok —) (@), (9:25)
which is equal to the error multiplied by the derivative of the activation function, and &’s are still related
to errors.

Finally, we get to the part of the error back-propagation: how do we compute &; defined similar to Eq.
(9.21) when i refers to a hidden unit prior to the output layer? To compute &; for a hidden unit labeled £,
we apply the chain rule for partial derivatives as follows:

_0E, Y\ O0E,da; da Z
%= da; - da, da; - Z'ﬁf da, =f'(a) Wi, (9.26)
k k I

for which we have used

aQ = Z WyiZ; = Z wyf (a;), (9.27)
and

day _ .. 9.2

da; = f'(a) Wy (9.28)

where other connection weights except wy; do not contribute to the partial derivative.

Eq. (9.26) is called the error back-propagation as we back-propagated the errors from the output later to
the prior hidden layer. If we have multiple hidden layers, Eq. (9.26) can be applied recursively.

This error back-propagation algorithm can be summed up as follows:

1. For a given input vector x,, compute the activation and activation function of a layer of hidden
units, (a;, fla;)), according to (9.18) and (9.19), with proper subscripts, in the forward direction
until done at the output layer.

2. Compute the errors of g, for all output units using Eq. (9.23) or Eq. (9.25), depending on whether
the output layer activation function is linear or not.

3. Then, back-propagate the errors from the output layer to the hidden layer recursively using Eq.
(9.26).

4. Use an equation similar to Eq. (9.22) with proper indices to compute the error gradients.

5. For batch methods, aggregate the gradients for all data points using the following equation:

44 MACHINE LEARNING: A QUANTITATIVE APPROACH

oE dE,

aWii - anl

(9.29)

Finally, the complexity of the error back-propagation is just O(W) (or the number of the connection
weight matrix) as the computations are dominated by those connection weight matrix multiplications at
each layer.

As is seen, from a topology point of view, a Hopfield net is a complete undirected graph G = <V, f>,
where V are vertices and f is a function that maps each pair of units (i, j) to a connectivity weight w;;
whose value is determined by the following rules:

= { 0, ifi=j(no self connect) (9.30)

In fact, the Hopfield network model originated from a mathematical model of ferromagnetism in
statistical mechanics, which is called the Ising spin model, named after the physicist Ernst Ising. The
ferromagnetism theory explains how materials become magnetized.

The Ising spin model describes how spins can help form ferrormagnetism. It assumes that the spins,

noted as s;, can take a positive value of +1 or a negative value of -1, and interact in pairs, with the total
energy of the system (E) defined as follows:

E= =) Jysis - ,uHis,- (9.31)
ij i=1

where the sum counts each pair of spins only once, p is the magnetic moment, H is the magnetic field

strength, and J; is known as exchange energy. Here, there are three scenarios with regard to the term Jj;:

MACHINE LEARNING: A QUANTITATIVE APPROACH 45

Now let’s come back to the Hopfield network model. The Hopfield network model, as shown in Figure
9.9, assumes that each unit has a state 5; that is updated according to the following formulation:

+1, i Z S = 6
s-:{ F LW (9.32)

L
-1, otherwise

Here we see that it’s the same symbol (s;) that can take the same set of values of either +1 or =1 with the
only difference that the state of the unit 7 has a threshold value of & and the state transition is determined
by whether the sum of the weighted state from other units exceeds that threshold.

Furthermore, similar to an Ising system as described by Eq. (9.31), the energy of a Hopfield network is
defined, by:

N
1
E = _EZ Wifsi% +Z Bisi (933)
ij i=1

Comparing Eqs. (9.31) with (9.33) shows that the two equations are similar. With the Hopfield network
model, the second term is determined by the sum of the state of each unit and its threshold, while the first
term represents the interactions among all units. Similar to the Ising spin model, when two units have the
same state, the product of s;s; would be positive, which will lower the energy of the system. However,
when two units have different states, the product of s;s; would be negative, which will elevate the energy
of the system. In fact, the Hopfield networks use the Hebbian learning rule to update the connection
weight wj;, in the way that simultaneous activation of units leads to increased connection weight, which
helps lower the energy of the system as well. The network is considered properly trained when the
energy of the system is driven to a local minimum, which the network should remember.

46 MACHINE LEARNING: A QUANTITATIVE APPROACH

Boltzmann machines are named after the Boltzmann distribution in statistical mechanics. First, let’s
clarify what a Boltzmann distribution is.

Suppose we have a system that is defined by its N energy states g;(i = 1, .., N). Then, under the thermal
equilibrium condition, the probability for the system to be at the energy state g obeys the following
distribution:

e“‘-'i/kT

W) (9.34)

pbi =

where k is the Boltzmann constant, T the temperature of the system and N the number of all states
accessible to the system. The denominator in Eq. (9.34) is also known as the canonical partition function
or the state sum, and often denoted as Z:

N
Z= Z}_le'ff/”, (9.35)

In our machine learning context, we can replace 1/k7 with y so that Eq. (9.34) can be rewritten as:

e~
= (9.36)

MACHINE LEARNING: A QUANTITATIVE APPROACH 47

Eq. (9.36) shows that lower energy states have higher probabilities. Fluctuations may occur, but the
probabilities of transitioning to higher energy levels decrease exponentially. When the system
temperature is raised, the probabilities of transitioning to higher energy levels increase accordingly. With
real metal materials, there is a metallurgical process known as annealing, which has a material heated up
slowly and then cooled down slowly. During this process, the crystalline structure of the material can
reach a global energy minimum. The high temperature excites all particles such as atoms and molecules,
but during the cooling phase, particles assume their optimal position in the crystalline lattice by losing
energy, leading to fewer fractures and irregularities in the crystal. The similar process in machine
learning is called simulated annealing, though.

In addition, the ratio of probabilities between states i and j is given by:

Bi _ o-na-e) (9.37)
J]

Another important property with the Boltzmann distribution is that it maximizes the following entropy,
which is one of the key concepts in machine learning:

N
H(pyp, pn) = — z pilogap; (9.38)
i=1

Therefore, once again, the Boltzmann distribution describes the states of a system under the thermal
equilibrium condition.

Now let’s get back to Boltzmann machines. We follow (Rojas, 1996) to derive the Boltzmann learning
algorithm, which would be a good learning exercise for gaining a deeper understanding of how a neural
network model is formulated precisely.

The global energy E of a Boltzmann machine is defined as, in general:

1 n n n
E = —E ZWU Xi Xj +Z gixio (9‘39)
i i=1

i=1 j=1

where:

= The constant n is the total number of units, both visible and hidden (which receive no external input).
= The state variable x; takes a binary value of 0 or 1.

* The weight parameter w;; represents the connection strength between units i and j.

= The variable &, is the bias of unit 7.

Since a Boltzmann machine consists of a visible layer and a hidden layer, let’s index these two layers
with v and h for convenience, respectively. Furthermore, without losing generality, let’s assume 6= 0,
i.e., the bias and thus the threshold is zero. From the probabilistic perspective, the following relationship
holds:

48 MACHINE LEARNING: A QUANTITATIVE APPROACH

. Z Py, (9.40)
h

where P, is the probability that the input units assume state v, P, is the joint probability of the combined
network state vh, and the sum represents all such states, implying that all network states will be visited at
the beginning. According to Eq. (9.36), Eq. (9.40) can be further expressed as:

1
Po=3) ep(—rEm), (9.41)
h
where Z is now:
2= exp(—rEm), (9.42)
vh

The energy of the network in state vh is:

n n
1
Evh = _'2' ZWU X‘Phx})h, (943)

i=1 j=1

Now we assume that the input data follows a probability distribution of F,, and we want the network to
learn this distribution. Then, the dis-similarity or distance between the assumed and the actual behavior
of the network can be measured by the KL divergence, which was introduced in Chapter 4, as follows:

E
D= Z F,log —. (9.44)
- Fk,

We know that the dis-similarity D would be zero if the two distributions were equal, which means that
the learning algorithm should attempt to minimize D. We also know that this can be achieved by keeping
adjusting the connection strength parameter with gradient descent:

aD F, P,
~Ng—=M). 57—
aWi/ - Pv anl

The partial derivative in the above equation can be obtained by combining Egs. (9.41), (9.42) and (9.43):

ap,
aWU

- }/(z XPMXVRP,, — B, < xp%; > ,m), (9.46)
h

where the term < x;x; >, is:

MACHINE LEARNING: A QUANTITATIVE APPROACH 49

< XX >free= zu,h xivhx;mpvh' (9.47)

which is the expected value of the product of the unit states x; and x; in a free running network.
Substituting the partial derivative in Eq. (9.45) with (9.46) gives us:

Ry
Awij = ”r(zvgzh xl!’hx;"hpvh - zv Fv < xixj >free)- (9-48)

Next, we introduce the conditional probability Py, which is the probability that the hidden units assume
state h when the visible units are in state v, that is:

Py = PPy (9.49)

Substituting (9.49) into (9.48) gives us:
Aw;; = 'I}’(Z F, Pppx"x" —Z E, < xx; >free) = A< XiXj >fivea =< Xi%) Sfree)- (9-50)
v,h v

where the term <xx>j,.q is equal to:
< XiXj >fixea= Zy I:'vphlvxtyhx}”l . (9.51)

We used the fact that), F, = 1 when deriving Eq. (9.50).

Eq. (9.50) is quite amazing: it clearly shows what Boltzmann learning is about. The terms of <x;x>fixt
and < x;X; >, are the stochastic correlation matrices of the network states at the visible layer and
system level, respectively. Without the hidden layer, the difference would be just zero. When the hidden
layer is added, it allows the units at the visible layer to lose energy gradually to the hidden layer. Then,
when a balance at the system level is reached, the KL divergence approaches zero, and the data
distribution at the input layer is learnt to be similar to the Boltzmann distribution, which can be used to
generate new data to augment existing data. In this sense, a Boltzmann machine is a generative neural
network model. It is also asynchronous, since only one unit is allowed to update its state a time.

The paper by Carreira-Perpinan and Hinton started with a succinct probability distribution p(x; W) over
an input data vector x with a connection weight parameter matrix W as follows:

e—E(x:W)

plx; W) = Zw) :

(9.52)

50 MACHINE LEARNING: A QUANTITATIVE APPROACH

where Z is the same partition function as (9.42) and E is the same energy function as (9.43) for a
Boltzmann distribution. As described in the last section, the KL divergence is defined similarly as

Po (%)
p(x; W)’

KL(pollp..) = Zpo(x)log (9.53)

where py is the data distribution and p.. is the eventual distribution at the end of the simulated annealing
or when the equilibrium condition is reached, which may take n—oo steps of iterations. The authors
introduced the concept of contrastive divergence for this particular subject of RBM, which is the
difference between two divergences as shown below:

€D, = KL(pollp.) = KL(pnlIp.0), (9.54)

Now assume that there are v visible units x = (x,, ..., x,)" that encode a data vector, and & hidden units y
=, ..., yv)"; all units are binary variables taking values in {0, 1}. The energy is then

E(x,y;W) = —y"Wx, (9.55)

where x, y and W are v-dimensional, h-dimensional, and Axv dimensional, respectively. Since there is no
inter-connection among each pair of the units of a layer (visible or hidden), the visible units are
conditionally independent given the hidden units and the hidden units are conditionally independent
given the visible units, simply because the units at each layer are not connected to each other or they are
not aware of each other. This makes the learning simpler than in general Boltzmann machines as we
introduced in the last section, since one step of Gibbs sampling can be carried out in two half-steps: the
first updates all the hidden units and the second updates all the visible units, or each layer can be handled
independently since its units are conditionally independent.

Now, let’s rewrite Eq. (9.50), the weight update for a generic Boltzmann machine, here:
Ay = A< XiX; >fivea =< XiXj free)- (9.56)

And compare (9.56) with the weight updates for the RBM shown below in two different cases for ML
learning and CD,, learning, respectively:

W(r+1)

i (”1) + (K yix; > piypew) >o—< Yixj >.) ML learning, (9.57)

wi(;“) = (m)+ (<K ¥ix; >pipew)>o—< Yixj >n) CD, learning, (9.58)

MACHINE LEARNING: A QUANTITATIVE APPROACH 51

& Gibbs sampling: We mentioned that one of the key techniques that the RBM uses to speed up
training is the Gibbs sampling. So, what is Gibbs sampling exactly? There are numerous terms in
machine learning, so you might want to expand your knowledge in this area. Here, we give a brief
explanation about what Gibbs sampling is.

First, let’s review the rules of probability. The two simple rules of sum rule and product rule form the
basis of all probability machinery:

Sumrule: p(x) = ZP(X.)’)
y

Product rule: p(x,y) = p(ylx)p(x)

In the above equations, p(x, y) is a joint probability, p(y/x) is a conditional probability of y given x, and
p(x) is a marginal (partial) probability.

Now let’s see how Gibbs sampling is carried out. Gibbs sampling is used to sample from a conditional
distribution when the joint distribution, e.g., p(x, y, z), is unknown or hard to sample from. Assume that
at step 1, we have a sample of (x'*, y?, 2¥). At step t+1:

= We first get a new sample of x**"’ from sampling p(x| y*, z);

= Then we get a new sample of y**" from sampling p(y| x**”, z) with the new sample of x™*"
conditional distribution;

= Finally, we get a new sample of " from sampling p(z| x“*"

and y**" in the conditional distribution.

in the

,) with the new samples of x**"

This process can be repeated for up to as many times as required until all samples are obtained, which
would obey a joint distribution of p(x, y, z) approximately. This is how Gibbs sampling works
conceptually.

52 MACHINE LEARNING: A QUANTITATIVE APPROACH

10 Convolutional Neural Networks

10.2.1 Convolution versus cross-correlation

In fact, there are two similar mathematical terms: convolution and cross-correlation. These two terms are
similar but not exactly the same. The prefix convolutional in the term CNN actually means cross-
correlational, but people have gotten used to call it convolutional. The difference between the two will
become clear, after we examine the definition of each next.

The convolution between two continuous functions f and g is defined using a star symbol between the
two as:

Fro® = [f@g-dds (10.1)

A few notes about the above definition:

= While the symbol 7 is used, it does not need to represent the time domain, e.g., it could be another
symbol like x that represents the space domain. Regardless of what symbol is used, it just means
shifting. If the problem is in the time domain, the above definition means a weighted average of the
function f{7) at time 7 where the weighting is given by g(-7) shifted by amount 7. As 7 changes, we can
think that the input function f{(7) is weighed and scanned by the weighting function.

= It doesn’t have to be one dimensional. For example, it could be two dimensional with two variables
for each function.

= It doesn’t have to be continuous. For example, the discrete convolution of f and g is given by:

(Frglnl= Y flmlgln—m]. (102)

m=—w

54 MACHINE LEARNING: A QUANTITATIVE APPROACH

Now let’s switch to the definition of cross-correlation. Cross-correlation between two continuous
functions fand g is defined using a star symbol as well between the two functions as:

9@ = [f@g+ds (103)

where f* represents the complex conjugate of f, i.e., if f is a complex function that f = u + iv then its
complex conjugate would be f=u —iv.

As is seen, now the minus sign for 7 with the definition of convolution is flipped to the plus sign for the
definition of cross-correlation. Cross-correlation can be used with discrete functions as well, such as:

(F*@lnl=) fimlglm+n, (10.4)

m=-w

namely, the minus sign is flipped to the plus sign for the weighting function.

MACHINE LEARNING: A QUANTITATIVE APPROACH 55

10.2.3 Zero-Padding

As we have just learnt, the convolution part of a CNN works by shifting a receptive field along a
dimension of the input layer with a stride until reaching the end of that dimension. The question is what
if there are not enough units left at the end to make up a complete receptive field. The solution is to add
zero-valued units, which is called zero-padding.

In fact, there is a formula to compute how many zero-valued units to pad on the input layer along each
dimension, with given output size, stride, input size, and receptive field size along that dimension. You
might find various formulas or directions from other texts, but I summarized this formula, which is easy
to remember and convenient:

Nzero_padding = [(noutputx S ninput) * (f - S)]mOd f' (10-5)

where (along the dimension we are concerned with):

* Noupu 1 the dimension of the output layer, for example, a hidden layer;

= sis stride, i.e., how many units to jump for making the next receptive field for the next unit on the
output layer;

* Ny, is the dimension of the input layer;

= and f is the dimension of the receptive field. Now let’s explain (10.5) as follows:

= First, assuming that the receptive field is the same as the stride, i.e., no overlapping on the input layer
for any two adjacent units on the output layer, then, the second term in (10.5) is zero, and we are
concerned with the first term only. In this case, it’s really about whether the input dimension is
divisible by the output dimension, which should be equal to the receptive field or stride. If not
divisible, the number of the zero-padding units would be equal t0 M,yepyue XS — Ninpue, OF the
difference between npy¢pyex S and Nppye. We need to take the modulo against the receptive field to
minimize the number of zero-padding to an absolutely minimally necessary number.

= Next, if the receptive field and the stride are not the same, then the difference contributes to the
number of zero-padding units needed. This is understandable as unequal receptive field and stride
may cause some imbalance given many possible situations arising from the first term.

16 and the output layer dimension 7n,,,, = 8, as well as the stride s = 2 and receptive f = 3, then,
according to Eq. (10.5), we have:

Nzero_padding = [(8x2—16) + (3 —2)]mod3 =[0+1]mod 3 =1,

which means that we only need to pad the input layer with one zero-valued unit. We see that the first
term is zero, but the second term is not, which results in 1. Figure 10.17 confirms this result.

56 MACHINE LEARNING: A QUANTITATIVE APPROACH

Now in Figure 10.19, you may notice that we added a term of “ReLU.” This term refers to the Rectified
Linear Unit, which is defined as simple as:

f(x) = max(0, x), (10.6)

i.e., for x < 0, x =0, and for x > 0, f(x) = x or f(x) is a linear function of x. Remember that each unit
requires an activation function to perform the transformation of the weighted sum of the inputs from
connected units in the prior layer. Le Cun used a hyperbolic tangent function in his 1989 paper, which is
defined as follows:

sinh(x) e*—e™

tanh(x) = = ,
anh(x) cosh(x) e*+e™™*

(10.7)

* Output layer: Finally, the output layer has 10 units for classifying the full ASCII set as shown in
Figure 10.22. This layer is composed of Euclidean Radial Basis Function units (RBF), one for each
class, with 84 inputs each from the F6 layer. The output of each RBF unit, y;, is computed as follows:

yi=) (g —wy), (108)
J
1 m
mini mean: p, « ;Z X (10.9)
i=1
) 1
mini mean variance: 63 « E(x,- =) (10.10)
x. —
normalize: X, « ~t ¥y (10.11)
Joi +¢
scale and shift:y; = yX, + B (10.12)

where (10.9) and (10.10) are mean and mean variance, respectively, y and 3 are learnt parameters applied
to the zero-centered and normalized activation X, and € is a smoothing parameter to avoid dividing by
zero, typically 0.001.The formulas for normalizing the errors were given in the original paper as well.

MACHINE LEARNING: A QUANTITATIVE APPROACH 57

10.6.3 He Initialization

As we know, weight normalization is a necessary task for every machine learning project. The method
here, known as He initialization, is widely used for this task. This technique was developed by the same
authors of the ResNet, in a paper titled “Delving deep into rectifiers: Surpassing human-level
performance on ImageNet classification,” available online at https://arxiv.org/pdf/1502.01852.pdf. This
technique helped achieve the first, surpassing human-level performance (5.1%) with the ImageNet
classification task. In this section, we give a brief introduction to this initialization technique, as if you
work on any deep learning project, most likely you will use this technique to initialize the weight
parameters of your model.

The He initialization is defined by the following activation function:

i if yi>0
f(yl)={3:yh l;{}{ Z o (10.13)

Here y; is the input of the nonlinear activation f on the ith channel, and g; is a coefficient controlling the
slope of the negative part. The subscript i in @; indicates that we allow the nonlinear activation to vary on
different channels. When g; = 0, it becomes ReLU; when g; is a learnable parameter, Eq. (10.13) is
known as Parametric ReLU (PReLU), which is equivalent to:

f&) = max(0, y;) + min(0,y;), (10.14)

Figure 10.33 shows the functions of ReLU and PReLU. Ifg; is a small and fixed value, e.g., a; = 0.01,
PReLU becomes the Leaky ReLU (LReLU). The motivation of LReLU is to avoid zero gradients.

58 MACHINE LEARNING: A QUANTITATIVE APPROACH

11 Recurrent Neural Networks

Due to its memory capability, the input, output and hidden state of a simple cell are expressed as
functions of time, such as x,, ¥, and A, as shown in Figure 11.1 on the left. For simple cells, the output
and the hidden state are the same, i.e., yq, = h. However, the input is a sum of the current input and the
previous hidden state, i.e., x4+ h.1), and the output or hidden state is a function of both the current input
and the previous state:

Ye = he = f(xe he-1), (11.1)
11.2.1 Back-propagation through time (BPTT)

In order to explain how the technique of back-propagation through time (BPTT) works, we added
weights to Figure 11.1 and re-presented it here as shown in Figure 11.4. Note from left to right that after
unrolling in time, we kept all parameters the same for all unrolled units in order to: (1) save training
time, and (2) reduce the number of parameters to fit to minimize the potential of overfitting. Weights are
slowing changing long term memories, and therefore, doing so would not affect performance.

Here is a summary of what those items in Figure 11.4 mean exactly:

= Inputs Xg.1), X, and X+ represent a sequence, which could be a sequence of words, with each of its
members being a one-hot vector representing a word of the sentence.

= Outputs y.1), Yay and yg+1) represent a sequence as well, which could be a sequence of words if the
input were a sequence of words, with each of its members being a one-hot vector representing a word
of the newly translated or predicted sentence.

= Hidden states h.;), hy), and h) represent the “memory” of the network. They are computed based
on the current input and the preceding state, such as shown below:

hety = f(Wexe, Wyphe—1), (11.2)

MACHINE LEARNING: A QUANTITATIVE APPROACH 59

Let dy(r) represent the output unit k’s target at time ¢. Using mean squared error, unit k’s error signal is
6c(6) = fi (nety () (di () =y, (), (11.3)

where

60

MACHINE LEARNING: A QUANTITATIVE APPROACH

yi(t) = fi(net;(t)) (114)

is the activation of a non-input unit i with differentiable activation function f;, and

i

is unit i’s current net input, and wy; is the weight for the connection from unit j to unit i. The non-output
unit j’s back-propagated error signal is

GO =1 (netj(t))ZwUf?i(t +1). (11.6)

The corresponding contribution to wy’s total update is @ (t)y,(t — 1), where « is the learning rate, and

[stands for an arbitrary unit connected to unit j.

Now, to help you understand Egs. (11.3) — (11.6), let me explain a few things here:

= Eq. (11.3) is essentially our Eq. (9.25) except that the authors used d instead of 1 for the target labeled
value, net, for activation ay, f for sigmoid function o, and finally 6, instead of &, for the error signal.
Besides, all quantities are time-varying. The authors’ notations were conventions at that time, and our
notations are conventions at present.

= Eq. (11.5) is equivalent to our Eq. (9.18), which is forward-looking, i.e., not backward-looking.

* Eq. (11.6) is equivalent to our Eq. (9.26) except differences in notations.

Next, the authors analyzed the above conventional BPTT with an arbitrary propagation “back into time”
for g time steps, i.e., with units v&- g« u, and arrived at the following interesting conclusions:

= If|fy, (net,, (t — m)w,, wy, | > 1.0, the error blows up, and conflicting error signals arriving at
unit v can lead to oscillating weights and unstable learning.

= If |f,, (net, (t —m)w, w, _ |<1.0, the error vanishes, and nothing can be learnt in acceptable
time.

= With conventional logistic sigmoid activation functions, the error flow tends to vanish as long as the
weights have absolute values below 4.0, especially at the beginning of the training phase.

Constant Error Flow: Naive Approach

A single unit. Based on the above analysis, how can we achieve constant error flow through a single unit
J with a single connection to itself so that error gradients will neither vanish nor explode? According to
Eq. (11.6), at time 1, j’s local error back flow is:

60 = 7 (net;(®)) w;;6,(¢ + 1). (11.7)

This means that to enforce constant error flow through j, we require §,(t) = 6;(t + 1), or

MACHINE LEARNING: A QUANTITATIVE APPROACH 61

f; (net;@®) w;; = 1.0. (11.8)
The constant error carrousel. Integrating (11.8) gives us

f, (net;) = "ewt"(t). (11.9)

Jji

This means that f; has to be linear, and unit j’s activation has to remain constant:

Yt + 1) = £, (net;(t + 1) = £; (w3 (®) = 3,®. (11.10)

The above condition can be satisfied by choosing an identity function f; : f(x) = x, Vx, and by setting w;;=
1.0. This was referred to as the constant error carrousel (CEC), which was the foundation for LSTM.
These interesting assumptions led to adding a forget-gate later, as will be discussed in the next section.

Now with in;’s activation at time ¢ denoted by y™i(t) and out;’s by y°“!i(t), we have

Y™(E) = fin, (et ©)), (11.11)
YOI = Fouey (o). (11.12)
where
n8t<in,out.c>;(t) = Z W<En.out,c>juyu (t - 1) (1113)
Y = y*“i(e)h (s, ®), (11.14)

where the “internal state” s, i(t) is

sc}(O) =0, fort=0, (11.15a)

5¢,(8) = 5,6 = D) +y™(b)g (netcj(t)) fort > 0. (11.15b)

Egs. (11.14) and (11.15b) have different implications: (11.14) implies that the function /4 scales memory
cell outputs computed from the internal state s, P while (11.15b) implies that the function g squashes

netcl..

62 MACHINE LEARNING: A QUANTITATIVE APPROACH

After adding the forget-gate for erasing memory when needed, the set of equations we need to add are:

net, () = Z Weuy"(t = 1). (11.16)

yoI(©) = £y, (net,, ©), (11.17)

The revised update equation for s, in the extended LSTM algorithms is

scj(t) = y”"/(t)scj(t - 1) +y™(t)g (netcj(t)) fort>0. (11.18)

where we have marked the forget-gate’s output in red.

MACHINE LEARNING: A QUANTITATIVE APPROACH 63

Equations

Assuming that the input sequence is X = (X, ..., X7), then, a standard RNN’s hidden vector sequence h =
(hy, ..., hy) and output vector sequence y = (y, ..., yr) are computed by iterating the following equations

fromr=1toT:
ht = H(thxt + Whhht—l + bh)’ (1119)

Ye = Wpyh, + by, (11.20)

To help understand the above two equations, a regular hidden unit is redrawn, as shown in Figure 11.12.
To calculate the hidden state, we sum up all inputs, add the bias, and apply the hidden activation function
H, which gives the hidden state of (11.19) at time 7. To calculate the output, just multiply the state with
the connection weight and add the bias, according to (11.20).

w

hh

-1 W t y'

Unfold

Figure 11.12 A regular RNN hidden unit.

As we stated earlier, generic RNNs do not work well due to gradient vanishing and exploding issues,
which led to the invention of the LSTM that uses gates to control memory read and write operations for
long range context. For the version of the LSTM used for this example as shown on the left of Figure
11.11, the sigmoid function ¢ is used for the hidden function h. Now, the state vectors for the input gate
(i), forget gate (f), cell activation (c), output gate (0), and hidden unit (h), can be expressed as:

iy = o(Wyx, + Wyheoy + Wcoy +b;), (11.21)
fo = o(Wypx, + Wyphe_y + Wepco_q + by), (11.22)
¢ = fiCrq +ictanh(Wy x, + Wy he_y + b.), (11.23)
0 = o(Wyoxe + Wiohe—1 + Weocr + by), (11.24)
h, = o;tanh(c,), (11.25)

Here, all vectors have the same size. For the connections added from the cell to each gate, their weight

matrices are diagonal, so element m in each gate vector only receives input from element m of the cell
vector.

64 MACHINE LEARNING: A QUANTITATIVE APPROACH

For the BRNN, the forward hidden sequence, the backward hidden sequence, and the output sequence
can be computed by iterating the backward layer from 7 = T to 1, the forward layer from # = 1 to 7, and
then updating the output layer as follows:

he = H(W 5%, + Wizh,_; + by), (11.26)
he = H(W gix. + WEEth + by), (11.27)
Ye = Wiyhe + Wiy he + by, (11.28)

Now, we stack the same hidden layer as described above to form a deep, N-layer BRNN, with the output
from one layer to be the input of the next layer. The hidden vector sequence A" is iteratively computed
fromn=1to Nand 7= 1 to 7, according to:

h} = HWpn-1nh™ + Wynynh? , + bp), (11.29)
where h”= x. The network outputs y, is:

Ye = Wpn,hi + by, (11.30)
Replacing each hidden sequence k" with the forward and backward sequences and ensuring output from
one layer used as the input for the next layer forms a deep bidirectional RNN or DBRNN. This example

used LSTM as the hidden layer and it was the first deep, bidirectional LSTM or DBLSTM. It turned out
that it yielded a dramatic improvement over single-layer LSTM.

MACHINE LEARNING: A QUANTITATIVE APPROACH 65

12 Autoencoders

Now from a mathematical point of view, we can consider that the inputs are first transformed from x to z
as follows:

z=f(Wx+Db), (12.1)

where f is a nonlinear activation function, such as a sigmoid function or Rectified Linear Unit (ReLU),
W and b are the weight matrix and bias, respectively. This part is the same as we explained before.

Next, we can consider that code z is transformed to the output x’ similarly
x'=gWz+b), (12.2)

where g is another nonlinear activation function, such as a sigmoid function or ReLU, and W’ and b’ are
the weight matrix and bias as well, respectively. This part is still the same as we explained before.
Because of the symmetry, the first part is called the encoder and the second part the decoder.

Now, where is the learning part? The learning part is that the autoencoder is trained to minimize the
difference between x and X', i.e., minimizing the distance of:

L(x,x) = llx - x'||? (12.3)

66 MACHINE LEARNING: A QUANTITATIVE APPROACH

12.3.1 A review of the Bayes’ theorem

Assume that we have two random variables x and z, and we use letter p to represent probability. Then,
the Bayes’ theorem can be expressed as:

(12.4)

p(zlx) (posterior) = p(z)(prior)x (p(xlz)(marginal likelihood))'

p(x)(marginal probability)

where all terms have been annotated with what they are. For example, p(zlx) is the posterior probability,
p(2) is the prior probability, p(x|z) is the marginal likelihood, and p(x) is the marginal probability. You
can think of x as the observed data, and z a parameter or condition, like the code with our autoencoders.

A particularly good example from https://en.wikipedia.org/wiki/Posterior_probability explains the
Bayes’ theorem really well. So let’s use it to explain all above terms in (12.4) next.

MACHINE LEARNING: A QUANTITATIVE APPROACH 67

12.3.2 Variational inference

First, let’s start with a function that has a generic form of y = f(x) that we are familiar with. We can take
this as a mapping from x—y by a function f. We are often concerned with the amount of change in y if
there is a change in x, which is governed by the first order derivative of f, like dy = (df /dx)dx.

Similarly, we can define a functional as a mapping that takes a function as input and returns the value of
the functional as the output. A good example is the entropy we are familiar with

Hip) = - [pomipGlax, (125)

where p is the probability of the variable x or the functional we have referred to as above.

Now, to put it into context, we are concerned with the amount of change in entropy corresponding to an
infinitesimal change in the functional, which comes from the rules of calculus of variations, similar to
the standard calculus. This is interesting to us, as you already know that many machine learning
problems can be abstracted into optimization problems in which the quantity being optimized is a
functional. The solutions to such optimization problems often lie with exploring all possible input
methods and finding one that maximizes or minimizes the functional.

Now let’s consider how the concept of variational optimization can be applied to the machine learning
inference problem. Suppose we have a model with all observed inputs expressed by X and all latent
variables or parameters by Z. Our model is now probabilistic and can be described by a joint probability
function p(X, Z). Our goal is to find an approximation for the posterior distribution p(Z|X) as well as the
marginal probability distribution or model evidence p(X), similar to the girls-boys example given in the
previous section, but we are concerned with a distribution here, not a particular prediction. The log
marginal probability can be decomposed into (Bishop, 2006):

In[p(X)] = L(q) + KL(qllp), (12.6)

where the above two terms are defined by

i) = f 4@ [%] az, 12.7)

and

68 MACHINE LEARNING: A QUANTITATIVE APPROACH

Z|X
KL(qllp) = fq(l)l [p((;))] dz, (12.8)

In order for Eq. (12.6] to hold, we seem to require that

f [p x. 21 (12.9)

p(Z|X) 5

You might have noticed that we introduced a new function g(Z). This is perhaps the most interesting
part. The rationale is that in general, the direct optimization of p(X) is difficult or intractable, but
optimization of the likelihood function or the joint probability p(X, Z) might be significantly easier,
which is why we see the joint probability p(X, Z) in Eq. (12.7). However, we do not just stop here. The
tricky part is that we introduced the function g(Z), which is an extra dimension. The first term in (12.6)
or (12.7) is called the lower bound because the KL divergence is always positive. Now we can maximize
the lower bound L(g) by optimization w.r.t. the distribution ¢(Z), which is equivalent to minimizing the
KL divergence in Eq. (12.8). If we give enough freedom for any possible choice for g(Z), then when the
lower bound L(g) is maximized, the KL divergence approaches zero, which implies that g(Z) equals the
posterior distribution p(Z|X).

Therefore, it seems that the next obstacle is how we find ¢(Z) that minimizes the KL divergence and
maximizes the lower bound L(g), which is a functional with respect to g(Z). One way to overcome that
obstacle is to use a parametric distribution ¢(Z|6) governed by a set of learnable parameters 6. This is
what the variational autoencoders can do, as explained next.

12.3.3 Auto-encoding variational Bayes (AEVB)

Now it’s much easier for us to understand the auto-encoding variational Bayes (AEVB), proposed by
Kingma and Welling in 2014, in a paper titled Auto-Encoding Variational Bayes (AEVB). They came up
with an algorithm that works efficiently in the case that the marginal likelihood
pox) = [pg(z)pg(xlz)dz and the posterlor density py(z|x) = po(x12)py(z)/po(x) are intractable.
These are exactly the issues we discussed in the preceding section. The second problem they have
addressed is that with a large dataset, batch optimization is too costly and sampling-based solutions such
as Monte Carlo EM would be too slow as well, since it involves a typically expensive sampling loop per
data point. Here, EM is a two-step (E-step and M-step), iterative method to find the maximum likelihood
estimate (MLE) or maximum a posterior (MAP) estimate of parameters in statistical models with latent
variables. Kingma and Welling came up with a solution to those problems by efficiently approximating:

1. The MLE or MAP estimate for the parameters 6, which allows one to mimic the hidden random
process and generate artificial data that resembles the real data. Here, MLE and MAP are
equivalent since py(z]x) o py(x|2)py(2).

2. The posterior inference of the latent variable z in the form of p,(z|x) with a given observed value
x for a choice of parameters 6. This is useful for coding or data representation tasks, which
belongs to the objective of the encoder of an autoencoder.

MACHINE LEARNING: A QUANTITATIVE APPROACH 69

3. The marginal inference of the variable x in the form of p,y(x). This allows us to perform all kinds
of inference tasks where a prior over x is required, which belongs to the objective of the decoder
of an autoencoder.

To realize the above solution, a recognition model q,4(z|x) was introduced to approximate the intractable
true posterior py(z|x). This recognition model can be taken as a probabilistic encoder, since given a data
point x it produces a distribution over the possible values of the code z from which the data point x could
have been generated. Similarly, p,(x|z) can be taken as a probabilistic decoder, since given a code z it
produces a distribution over the possible corresponding values of x.

The algorithm boils down to obtain a differentiable estimator of the variational lower bound, defined as:
L(6 ¢ x) = —Dk.[q4(2l)| Ips(2)] + Eq (210 [log pe(x2)], (12.10)

where the symbol E[f] = [p(x) f (x)dx represents the expectation or average value of a function f.

In order to optimize the lower bound with gradient ascent, it turns out that a “re-parameterization trick”
is required, i.e., re-parameterizing the random stochastic variable Z~q4(z|x) into a deterministic variable

z=g4&x) with &p(e)). (12.11)

Here, the symbol ‘~' in Z~q4(z|x) means that Z is distributed according to distribution g4(z|x), and so
forth. Given (12.11) for z as a function, the second term of (12.10) can be obtained with Monte Carlo
estimates of expectations. On the other hand, the KL-divergence term can be integrated analytically, such
that only the expected reconstruction error [the second term of (12.10)] requires estimation by sampling.
This sampling workaround is known as the re-parameterization trick.

Now, let’s take the latent variable z in the univariate Gaussian form such that z ~p(z|x) = N (4, 62).
Then a valid re-parameterization would be z = g+ o¢ with ¢ being an auxiliary noise variable

£~N(0,1), a normal distribution of zero mean and standard deviation of 1. Modeling the latent variable

z results in the following estimator with data point x:

J
L(6; x‘”)%z (1 +108((5™?) - (")~ (4")?)
j=1
1 L
+ =) logp(x®[z®0), (12.12)
L; ¢

where J represents the mini-batch size, L the number of samples per data point, z(*") the i component of
the vector z represented by:

z0) = 4O + .0 and £2~N(0,1), (12.13)

where ‘-’ represents the element-wise product.

70 MACHINE LEARNING: A QUANTITATIVE APPROACH

Trainings for both generator and discriminator are governed by their respective cost functions. To learn
the generator’s distribution p, over data x, a prior p.(z) on input noise variable z is introduced, which
defines a mapping function G(z; &) that maps samples z from the prior p.(z) to data space, with G a
differentiable function represented by an MLP with parameters 6. For the discriminator D, the goal is to
identify whether the input is from the real data distribution p,, or the generator’s distribution pg, which
can be estimated with a scalar output that may represent a quantity like the confidence score. Thus, the
cost function for the discriminator MLP D can be defined as:

J5(62:65) = Ex-piara109D () + E; p,) log(1 = D(G(2))), (12.14)

which is equivalent to maximizing the probability of the sample coming from the training set, not from
the generator.

The cost function for the generator MLP G can be defined as:

Jc(64,6,) = E; p,) log(1 = D(G(2))), (12.15)

which is equivalent to minimizing the probability of the sample not from the generator. However, during

early training, log(l1 —D(G(z))) saturates; therefore, the generator is trained to maximize
log(D(G(2z))) instead.

Since the two models compete against each other, the gain for one party is a loss for the other. Therefore,
Egs. (12.14) and (12.15) can be combined into one with the familiar two-player min-max value function
V(G, D) from game theory as follows:

min maxV (D, 6) = Expypea 109D @) + E; () log(1 = D(G(2))), (12.16)

The adversarial autoencoders begin with an aggregated posterior distribution of ¢(z) on the hidden code
vector of the autoencoder, as shown below:

q(z) = f q(zlx)py(x)dx, (12.17)

where ¢(z|x) is an encoding distribution, and p,(x) is the data distribution. So far, everything is with a
regular autoencoder itself. Now suppose that we make an arbitrary prior p(z) available to the autoencoder
by connecting a generative adversarial network (GAN) with the autoencoder that Eq. (12.17) refers to, as
shown in Figure 12.8. We then train the GAN to match ¢(z) with p(z), namely, to have an aggregated
posterior to match a prior. The GAN’s generator now becomes another encoder to the autoencoder g(z|x)
above, and the autoencoder attempts to minimize the reconstruction error in the meantime. In the end, the
autoencoder learns a deep generative model that maps the imposed prior p(z) to the data distribution.

	Machine Learning
	Copyright @2018 by Henry H. Liu. All rights reserved
	1 Introduction to Machine Learning
	2 Machine Learning Fundamentals Illustrated with Regression
	3 Pattern Recognition with Classification
	4 Optimization and Search Illustrated with Logistic Regression
	5 Rule-Based Learning: Decision Trees
	6 Instance-Based Learning: Support Vector Machines
	7 Random Forests and Ensemble Learning
	8 Dimensionality Reduction
	9 Introduction to Artificial Neural Networks
	10 Convolutional Neural Networks
	11 Recurrent Neural Networks
	12 Autoencoders

