
 

 

 

Note: This appendix is also available as a colored version of PDF from this book‟s download website.  

This appendix demonstrates an example RNN implementation with Keras/TensorFlow. Keras is a 

Python-based frontend capable of running on top of a more powerful deep learning engine like 

TensorFlow. In this section, we demonstrate how to install Keras to work with TensorFlow, and then 

present an example of using the Keras LSTM stateful and stateless models to predict time-series 

sequences. 

D.1 INSTALLING KERAS/TENSORFLOW 

Keras installation is documented in detail at https://keras.io/#installation. I referred to the instructions 

given at https://www.tensorflow.org/install/install_mac and installed TensorFlow on my MacBook Pro 

with macOS Sierra version 10.12.6 by choosing the “native” pip option. It was as easy as executing the 

following command: 

$sudo easy_install --upgrade pip 
$sudo easy_install --upgrade six 
$pip3 install tensorflowpip3 install tensorflow 

Then, I executed the following commands to install Keras from the GitHub source: 

$cd /Users/henryliu/Documents/ml_dev 
$git clone https://github.com/keras-team/keras.git 
$cd keras 

Appendix D RNN/LSTM Example 

Implementations with 

Keras/TensorFlow 

https://keras.io/#installation
https://www.tensorflow.org/install/install_mac


426                        MACHINE LEARNING: A QUANTITATIVE APPROACH

 

   

$sudo python3 setup.py install 

I got the following error during the above installation: 

fatal error: 'yaml.h' file not found 

However, the issue was resolved after I executed the following command: 

henryliu:keras henryliu$ sudo pip3 install --upgrade keras 

Then, I clicked Eclipse  Preferences  PyDev  Interpreters  Python Interpreter  as shown in 

Figure D.1, to make sure Keras 2.1.5 was available for use. 

 

Figure D.1 Keras 2.1.5 made available on Eclipse/PyDev. 

Now open the lstm_time_series,py file in the directory of ch11 of the ml_quantitative project from this 

book‟s download and verify that it runs. 

D.2 THE KERAS LSTM TIME SERIES EXAMPLE 

In the ch11 directory of the project, you should find two scripts: lstm_stateful.py, which is the original 

example from Keras‟s examples directory, and lstm_time_series.py, which is the same example I adapted 

to help make it easier to understand this example. I suggest that you run and examine the original script 

first and note down the questions you have, which might be explained next with the adapted script. 

This is a very interesting LSTM example. However, it may not be obvious how it works at the first 

glance. Before presenting the adapted script, let‟s review a few basic generic Python examples first. 

D.2.1 PANADS DATAFRAME 



APPENDIX D RNN/LSTM EXAMPLE IMPLEMENTATIONS WITH KERAS/TENSORFLOW               427

 

  

The LSTM example to be presented uses a Pandas DataFrame object to hold the time series data. Here is 

how we can generate an arbitrary Pandas DataFrame object: 

$python3 
>>> import pandas as pd 
>>> df = pd.DataFrame(np.random.randn(8,4)) 
>>> df 
          0         1         2         3 
0  0.058779  1.070018  0.817022  0.910342 
1 -2.871662 -0.346887 -0.313775 -0.082175 
2  0.496465  0.835879  1.435297  0.472730 
3 -0.602593 -1.569787  0.166828 -1.476208 
4  0.205998  0.682439 -0.289690  0.361073 
5  0.808703 -1.249511  0.289556  1.530001 
6  1.689375 -1.168729 -0.563632 -0.053785 
7  0.667124  1.104330 -0.508920 -0.655200 

Now we have a Pandas DataFrame object with 4 columns and 8 rows. You can query the shape of this 

Pandas DataFrame object by issuing the following command: 

>>> df.shape 
(8, 4) 

That is, we can take this as an 8x4 matrix. We can query it further by column as follows: 

>>> df[0] 
0    0.058779 
1   -2.871662 
2    0.496465 
3   -0.602593 

4    0.205998 
5    0.808703 
6    1.689375 
7    0.667124 

This gives the entire column. If we want to limit the rows for a particular column, we can do: 

>>> df[1][2:] 
2    0.835879 
3   -1.569787 
4    0.682439 

5   -1.249511 
6   -1.168729 
7    1.104330 
Name: 1, dtype: float64 

That is, we got rows 2-7 of column 1, with rows 0-1 skipped, since both columns and rows are zero-

index based.  

We can even shift a column down, e.g.: 

>>> x=df[0].shift(1) 
>>> x 
0         NaN 
1    0.058779 
2   -2.871662 

3    0.496465 
4   -0.602593 
5    0.205998 
6    0.808703 
7    1.689375 

The LSTM example to be examined uses the above Pandas DataFrame functions.  

Next, we review the numpy’s repeat function. 

D.2.2 NUMPY’S REPEAT FUNCTION 



428                        MACHINE LEARNING: A QUANTITATIVE APPROACH

 

   

Here is an example of the use of NumPy‟s repeat function: 

>>> import numpy as np 
>>> x=np.array([[1,2],[3,4]]) 
>>> x 
array([[1, 2], 
       [3, 4]]) 
>>> np.repeat(x, 2) 
array([1, 1, 2, 2, 3, 3, 4, 4]) 

In this case, x is a 2x2 matrix. The above repeat function repeats each element by n times, here n = 2, 

and then flattens the matrix row by row into one row.   

If we specify axis = 0, we would get: 

>>> np.repeat(x, 2, axis=0) 
array([[1, 2], 
       [1, 2], 
       [3, 4], 
       [3, 4]]) 

That is, each row is repeated twice and we end up with four rows with the first two rows and the last two 

rows identical, respectively. 

If we specify axis = 1, we would get: 

>>> np.repeat(x, 2, axis=1) 
array([[1, 1, 2, 2], 
       [3, 3, 4, 4]]) 

That is, each element is repeated twice without being flattened, and we end up with two rows and four 

columns. 

Now, we are ready to present the adapted LSTM example that models a time series sequence of limited 

length. 

D.3 AN LSTM EXAMPLE THAT MODELS A TIME SERIES SEQUENCE OF 

LIMITED LENGTH 

Listing D.1 shows the adapted Keras LSTM example that models a time series sequence of limited 

length. First, run this example in your env and make sure you get the similar results as shown in Listing 

D.2 and Figures D.2 and D.3. If you ran the original Keras lstm_staeful.py script, you would notice that 

the following changes had been made with the adapted example: 

▪ We changed the model.fit parameter verbose from 1 to 0 so that the output would not show the 

lengthy training steps within each epoch. 

▪ All charts have x and y labels, and the title includes the tsteps and lahead parameter values used. 

▪ Figure D.2 shows the training data and expected output as the moving average of the subsequences 

with their rolling window length defined by the parameter tsteps. For example, with tsteps = 2 

and the first two data points of 0.084532 and 0.021696, the first output would be computed as 



APPENDIX D RNN/LSTM EXAMPLE IMPLEMENTATIONS WITH KERAS/TENSORFLOW               429

 

  

(0.084532 + 0.021696) / 2 =  0.031418. In general, the moving average with a given window 

length of tsteps is defined as  

   
 

      
∑   

          

   

 

▪ Fig. D.3 shows the predicted versus the expected with the stateful and stateless LSTM models, 

respectively. The original example shows the differences between the predicted and expected, which 

is less obvious visually in terms of how well the two agree with each other. We also added the RMSE 

value to the title to help evaluate the accuracy of the model. As is seen, the RMSE values are 0.014 

and 0.031 for the stateful and stateless models, respectively, indicating that the stateful model 

predicted better than the stateless model. You can visually verify this by examining the two subplots 

in Figure D.3. 

Next, we examine how the adapted script works.  

Before we start, I suggest that you take a quick look at the script shown in Listing D.1 or on your 

PyDev/Eclipse IDE to get an idea of how it works in general. Then, I‟ll help you understand some 

details, such as: 

▪ Lines 5-6 import Keras Sequential, Dense and LSTM models. The Sequential and LSTM models are 

obvious, but what about the Dense model? A Dense model in Keras is just a fully-connected layer. 

As we know, all ANN models have at least a hidden layer and an output layer with a specified 

number of units or neurons. Therefore, a layer is one of the most basic elements in composing an 

ANN model. 

▪ Lines 7-8 import the sqrt and mean_squared_error functions for computing RMSE. 

▪ Lines 9-12 define either the model parameters or job running parameters. Out of those parameters, 

tsteps and lahead are not so obvious in terms of what they are. In fact, tsteps specifies the length 

of the sub-sequence for calculating the moving average as the output corresponding to that 

subsequence, while lahead specifies the length of the input subsequence for training the LSTM 

model. We will see more about how these two parameters affect the outcome of an LSTM model 

later. 

▪ Lines 22-25 define a random number generation function for a given amplitude and the length of the 

array. This is the input sequence that this example uses. You can replace it with an input sequence of 

your own for a real application.  

▪ Line 26 defines the number of data points to drop, based on the values of tsteps and lahead. 

▪ Line 29 uses the function rolling to compute expected output as the target values for the supervised 

LSTM training. 

▪ Lines 40-49 output the input and output data characteristics. 

▪ Lines 50-59 plot the input versus expected output, as shown in Figure D.2. Note that you need to 

click on the red-cross icon at the upper left corner in order to continue the script execution. 

▪ Lines 60-68 create the model, with a parameter named stateful passed in. This is how an LSTM 

model is created in Keras. It starts with a Sequential mode, then adds an LSTM block with 20 units, 

an input shape defined by (lahead, 1) or (input seq length, output seq length), a batch size, 

and a stateful parameter. The difference between a stateful and a stateless LSTM model is about 



430                        MACHINE LEARNING: A QUANTITATIVE APPROACH

 

   

whether the state is maintained between batches. These two models are trained differently as we will 

see later. 

▪ Lines 72-94 define a function about how to split data. A ratio of 0.8 is hard-coded, which means that 

80% will be used for training and 20% for testing. 

▪ Lines 101-104 define how the stateful LSTM model is trained, while line 105 calls the predict 

function to predict on the test time series sequence.  

▪ Line 110 defines how the stateless LSTM model is trained, while line 111 calls the predict function 

to predict on the test time series sequence. 

You may have noticed that the stateful and stateless models are trained differently. The stateful model is 

trained epoch-by-epoch, with the state reset by calling the reset_states function from one epoch to the 

next. However, the stateless model does not have such a constraint – it has the epochs parameter passed 

to the fit function all in one, as shown at line 110. The details of how the Keras LSTM model works 

internally are beyond the scope of this text, and you can pursue it further by consulting the Keras 

documentation or examining the Keras source code. 

Listing D.1 lstm_time_series.py (with comments removed to save space) 

1 from __future__ import print_function 

2 import numpy as np 

3 import matplotlib.pyplot as plt 

4 import pandas as pd 

5 from keras.models import Sequential 

6 from keras.layers import Dense, LSTM 

7 from math import sqrt 

8 from sklearn.metrics import mean_squared_error 

 

9 input_len = 1000 

10 tsteps = 2 #rolling window length 
11 lahead = 1 
12 batch_size = 1 
13 epochs = 10 

 

14 print("*" * 33) 
15 if lahead >= tsteps: 
16     print("STATELESS LSTM WILL ALSO CONVERGE") 
17 else: 
18     print("STATELESS LSTM WILL NOT CONVERGE") 
19 print("*" * 33) 

 

20 np.random.seed(1986) 
 

21 print('Generating Data...') 
 

22 def gen_uniform_amp(amp=1, xn=10000): 
23     data_input = np.random.uniform(-1 * amp, +1 * amp, xn) 
24     data_input = pd.DataFrame(data_input) 
25     return data_input 

 

26 to_drop = max(tsteps - 1, lahead - 1) 



APPENDIX D RNN/LSTM EXAMPLE IMPLEMENTATIONS WITH KERAS/TENSORFLOW               431

 

  

27 data_input = gen_uniform_amp(amp=0.1, xn=input_len + to_drop) 
 

28 # set the target to be a N-point average of the input 
29 expected_output = data_input.rolling(window=tsteps, center=False).mean() 

 

30 if lahead > 1: 
31     print("data_input_values:\n", data_input.values) 
32     data_input = np.repeat(data_input.values, repeats=lahead, axis=1) 
33     print("data_input after repeat\n", data_input) 
34     data_input = pd.DataFrame(data_input) 
35     for i, c in enumerate(data_input.columns): 
36         data_input[c] = data_input[c].shift(i) 

 

37 # drop the nan 
38 expected_output = expected_output[to_drop:] 
39 data_input = data_input[to_drop:] 

 

40 print('Input shape:', data_input.shape) 
41 print('Output shape:', expected_output.shape) 
42 print('Input head: ') 
43 print(data_input.head()) 
44 print('Output head: ') 
45 print(expected_output.head()) 
46 print('Input tail: ') 
47 print(data_input.tail()) 
48 print('Output tail: ') 
49 print(expected_output.tail()) 

 

50 print('Plotting input and expected output') 
51 n = 50 
52 #n = input_len 
53 plt.plot(data_input[0][:n], '-') 
54 plt.plot(expected_output[0][:n], '-') 
55 plt.xlabel('x') 
56 plt.ylabel ('y') 
57 plt.legend(['Input', 'Expected output']) 
58 plt.title('Input vs Expected (tsteps = %i)' %(tsteps)) 
59 plt.show() 

 

60 def create_model(stateful): 
61     model = Sequential() 
62     model.add(LSTM(20, 
63               input_shape=(lahead, 1), 
64               batch_size=batch_size, 
65               stateful=stateful)) 
66     model.add(Dense(1)) 
67     model.compile(loss='mse', optimizer='adam') 
68     return model 

 

69 print('Creating Stateful Model...') 
70 model_stateful = create_model(stateful=True) 

 



432                        MACHINE LEARNING: A QUANTITATIVE APPROACH

 

   

71 # split train/test data 
72 def split_data(x, y, ratio=0.8): 
73     to_train = int(input_len * ratio) 
74     # tweak to match with batch_size 
75     to_train -= to_train % batch_size 
76     print("to_train = ", to_train) 

 

77     x_train = x[:to_train] 
78     y_train = y[:to_train] 
79     x_test = x[to_train:] 
80     y_test = y[to_train:] 

 

81     # tweak to match with batch_size 
82     to_drop = x.shape[0] % batch_size 
83     if to_drop > 0: 
84         x_test = x_test[:-1 * to_drop] 
85         y_test = y_test[:-1 * to_drop] 

 

86     # some reshaping 
87     reshape_3 = lambda x: x.values.reshape((x.shape[0], x.shape[1], 1)) 
88     x_train = reshape_3(x_train) 
89     x_test = reshape_3(x_test) 
90  
91     reshape_2 = lambda x: x.values.reshape((x.shape[0], 1)) 
92     y_train = reshape_2(y_train) 
93     y_test = reshape_2(y_test) 

 

94     return (x_train, y_train), (x_test, y_test) 
 

95 (x_train, y_train), (x_test, y_test) = split_data(data_input, 
expected_output) 

96 print('x_train.shape: ', x_train.shape) 
97 print('y_train.shape: ', y_train.shape) 
98 print('x_test.shape: ', x_test.shape) 
99 print('y_test.shape: ', y_test.shape) 

 

100 print('Training') 
101 for i in range(epochs): 
102     print('Epoch', i + 1, '/', epochs) 
103     model_stateful.fit(x_train, 

                       y_train, 

                       batch_size=batch_size, 

                       epochs=1, 

                       verbose=0, 

                       validation_data=(x_test, y_test), 

                       shuffle=False) 

104     model_stateful.reset_states() 
 

105 predicted_stateful = model_stateful.predict(x_test, batch_size=batch_size) 
 

106 rmse = sqrt(mean_squared_error(y_test.flatten()[tsteps - 1:], 
predicted_stateful.flatten()[tsteps - 1:])) 

107 print('Stateful LSTM RMSE: %.3f' % rmse) 



APPENDIX D RNN/LSTM EXAMPLE IMPLEMENTATIONS WITH KERAS/TENSORFLOW               433

 

  

108 print('Creating Stateless Model...') 
109 model_stateless = create_model(stateful=False) 

 

110 model_stateless.fit(x_train, 
                    y_train, 

                    batch_size=batch_size, 

                    epochs=epochs, 

                    verbose=0, 

                    validation_data=(x_test, y_test), 

                    shuffle=False) 

 

111 predicted_stateless = model_stateless.predict(x_test, 
batch_size=batch_size) 

112 rmse = sqrt(mean_squared_error(y_test.flatten()[tsteps - 1:], 
predicted_stateless.flatten()[tsteps - 1:])) 

113 print('Stateless LSTM RMSE: %.3f' % rmse) 

Listing D.2 Console output of running the lstm_time_series.py script 

Using TensorFlow backend. 
********************************* 
STATELESS LSTM WILL NOT CONVERGE 
********************************* 
Generating Data... 
Input shape: (1000, 1) 
Output shape: (1000, 1) 
Input head:  
          0 
1 -0.084532 
2  0.021696 
3  0.079500 
4  0.008981 
5  0.040544 
Output head:  
          0 
1 -0.035379 
2 -0.031418 
3  0.050598 
4  0.044240 
5  0.024763 
Input tail:  
             0 
996   0.010251 
997  -0.027833 
998   0.003984 
999   0.028471 
1000 -0.057877 
Output tail:  

             0 
996   0.025187 
997  -0.008791 
998  -0.011925 
999   0.016227 
1000 -0.014703 
Plotting input and expected output 
Creating Stateful Model... 
to_train =  800 
x_train.shape:  (800, 1, 1) 
y_train.shape:  (800, 1) 
x_test.shape:  (200, 1, 1) 
y_test.shape:  (200, 1) 
Training 
Epoch 1 / 10 
…… 
Epoch 10 / 10 
Predicting 
Stateful LSTM RMSE: 0.014 
Creating Stateless Model... 
Training 
Predicting 
Stateless LSTM RMSE: 0.031 
Plotting Results 

 



434                        MACHINE LEARNING: A QUANTITATIVE APPROACH

 

   

 

Figure D.2 Time series sequence input versus expected with a rolling window length of tsteps = 2. 

 

Figure D.3 Time series sequence modeled with stateful and stateless LSTM models, respectively. 

D.4 MORE EXPERIMENTS WITH THE KERAS LSTM TIME SERIES 

EXAMPLE 

Although the previous LSTM example is simple, it gives us sufficient opportunities to experiment. If you 

examine the comments from the source code of this example, you will find the bulk of it is about the 

parameter lahead. You might think that we should always use the same value for the lahead and 

tsteps parameters, in which case, both the stateful and stateless models converge, but according to the 



APPENDIX D RNN/LSTM EXAMPLE IMPLEMENTATIONS WITH KERAS/TENSORFLOW               435

 

  

comments in the original source code of the example, one can also specify lahead < tsteps, in which 

case, the input subsequence length is smaller than the moving averaging rolling window view length and 

only the stateful model converges. Perhaps this latter case gives us an option to truncate a long input 

subsequence in order to speed up training stateful models. 

In this section, we try a few more experiments to see how the parameters of tsteps and lahead work 

out with each other, and also how the stateful and stateless models compare with each other. First, we try 

an example with tsteps = 2 and lahead = 3, and then an example with tsteps = 3 and lahead = 2. 

The results are presented in the next two subsections. 

D.4.1 STATEFUL VS STATELESS LSTM MODELS WITH TSTEPS = 2 AND LAHEAD = 3 

First, Listing D.3 shows the input and output data characteristics. Note the following: 

▪ The values attribute of the data_input DataFarme object gives a column vector, which is turned 

into a 3-column matrix after its repeat function is called. 

▪ The next segment of the output shows how those 3 columns are shifted after the shift function is 

called on each column vector. Note the index „c‟ in data_input[c] that identifies the column vector 

with the given index c. The first column is not shifted as shift by „0‟ is no shift. 

▪ The input head and tail outputs show how the input subsequences are prepared for training. For 

example, under “input head:”, we see how the first 3 elements of column 0, [0.021696, 0.079500, 

0.008981], have been turned into a row vector or subsequence with the index value of 4. This is used 

as input for every step that an LSTM model is trained. 

▪ The output is just a single column vector with an output subsequence length of 1. 

Figs. D.4 and D.5 show the input versus expected output chart and the stateful versus stateless model 

predictions, respectively. In this case, the RMSE values are 0.004 and 0.001 for the stateful model and 

stateless model, respectively, with the stateless model performed better than the stateful model. 

However, both the stateful model and stateless model performed significantly better than the previous 

case with tsteps = 2 and lahead = 1, as shown in Fig. D.3. 

Listing D.3 Input and output data characteristics with tsteps = 2 and lahead = 3 

Using TensorFlow backend. 
Generating Data... 
data_input_values: 
 [[ 0.01377506] 
 [-0.08453234] 
 [ 0.02169589] 
 ... 
 [ 0.02847093] 
 [-0.05787658] 
 [-0.09730742]] 
data_input after repeat 
 [[ 0.01377506  0.01377506  0.01377506] 
 [-0.08453234 -0.08453234 -0.08453234] 
 [ 0.02169589  0.02169589  0.02169589] 
 ... 

 [ 0.02847093  0.02847093  0.02847093] 
 [-0.05787658 -0.05787658 -0.05787658] 
 [-0.09730742 -0.09730742 -0.09730742]] 
i =  0  c =  0 data_input[c] 0    0.013775 
1   -0.084532 
2    0.021696 
3    0.079500 
4    0.008981 
Name: 0, dtype: float64 
i =  0  c =  0 data_input[c] after 0    0.013775 
1   -0.084532 
2    0.021696 
3    0.079500 
4    0.008981 
Name: 0, dtype: float64 



436                        MACHINE LEARNING: A QUANTITATIVE APPROACH

 

   

i =  1  c =  1 data_input[c] 0    0.013775 
1   -0.084532 
2    0.021696 
3    0.079500 
4    0.008981 
Name: 1, dtype: float64 
i =  1  c =  1 data_input[c] after 0         NaN 
1    0.013775 
2   -0.084532 
3    0.021696 
4    0.079500 
Name: 1, dtype: float64 
i =  2  c =  2 data_input[c] 0    0.013775 
1   -0.084532 
2    0.021696 
3    0.079500 
4    0.008981 
Name: 2, dtype: float64 
i =  2  c =  2 data_input[c] after 0         NaN 
1         NaN 
2    0.013775 
3   -0.084532 
4    0.021696 
Name: 2, dtype: float64 
Input shape: (1000, 3) 
Output shape: (1000, 1) 
Input head:  

          0         1         2 
2  0.021696 -0.084532  0.013775 
3  0.079500  0.021696 -0.084532 
4  0.008981  0.079500  0.021696 
5  0.040544  0.008981  0.079500 
6 -0.022773  0.040544  0.008981 
Input tail:  
             0         1         2 
997  -0.027833  0.010251  0.040122 
998   0.003984 -0.027833  0.010251 
999   0.028471  0.003984 -0.027833 
1000 -0.057877  0.028471  0.003984 
1001 -0.097307 -0.057877  0.028471 
Output head:  
          0 
2 -0.031418 
3  0.050598 
4  0.044240 
5  0.024763 
6  0.008886 
Output tail:  
             0 
997  -0.008791 
998  -0.011925 
999   0.016227 
1000 -0.014703 
1001 -0.077592 

 

 

Figure D.4 Moving averaging of a random sequence with tsteps = 2. 



APPENDIX D RNN/LSTM EXAMPLE IMPLEMENTATIONS WITH KERAS/TENSORFLOW               437

 

  

 

Figure D.5 Stateful versus stateless LSTM models for a random sequence with tsteps = 2 and lahead 

= 3. 

D.4.2 STATEFUL VS STATELESS LSTM MODELS WITH TSTEPS = 3 AND LAHEAD = 2 

This is a case that lahead < tsteps, with input versus the expected chart shown in Fig. D.6. When the 

script was run, a console output line was displayed, saying “STATELESS LSTM WILL NOT 

CONVERGE”. This is confirmed by Figure D.7, which shows a good agreement between the expected 

and predicted with an RMSE value of 0.005 for the stateful model, but a not so good agreement between 

the expected and predicted with  an RMSE value of 0.022 for the stateless model. 

Next, I tried a run with lahead = tsteps = 2, as presented in the next section. 

D.4.3 STATEFUL VS STATELESS LSTM MODELS WITH TSTEPS = 2 AND LAHEAD = 2 

You may wonder what would be the case if we had tsteps = lahead = 2. Fig. D.8 shows the results. In 

this case, we have a perfect prediction with the stateless model, but the stateful model performed poorly, 

with an RMSE value of 0.040. To verify that it is repeatable, I ran it the second time, with the similar 

results shown in Figure D.9. Thus, it seems that with this set of settings for the parameters of tsteps and 

lahead, the stateless model does perform significantly better than the stateful model. 

This concludes our RNN/LSTM example with Keras/TensorFlow. 



438                        MACHINE LEARNING: A QUANTITATIVE APPROACH

 

   

 

Figure D.6 Moving averaging of a random sequence with tsteps = 3. 

 

Figure D.7 Stateful versus stateless LSTM models for a random sequence with tsteps = 3 and lahead 

= 2. 



APPENDIX D RNN/LSTM EXAMPLE IMPLEMENTATIONS WITH KERAS/TENSORFLOW               439

 

  

 

Figure D.8 Stateful versus stateless LSTM models for a random sequence with tsteps = 2 and lahead 

= 2. 

 

Figure D.9 Stateful versus stateless LSTM models for a random sequence with tsteps = 2 and lahead 

= 2 (second run).


