

Note: This appendix is also available as a colored version of PDF from this book’s download website.

This appendix demonstrates how one can apply the multi-layer perceptron model to solve regression

machine learning problems. We choose the sklearn.neural_network.MLPRegressor model and apply it to

our fuel economy machine learning use case we studied in the first few chapters of this book. Although it

is a very simple implementation, it actually demonstrates many aspects of a feed-forward neural network

model in terms of how multiple layers are composed, how various activation functions work, how

various solvers work, etc.

Check out this web link for the details of the MLP model we use for this case: http://scikit-

learn.org/stable/modules/generated/sklearn.neural_network.MLPRegressor.html#sklearn.neural_network

.MLPRegressor.

B.1 THE BASELINE

First, let’s establish a baseline.

Figure 2.8 of the main text illustrated how a linear regressor works when applied to the fuel economy

machine learning use case. I copied the script ch02.vehicles_linear_regression_mean.py for that

use case and renamed it vehicles_mlp_mean.py. The changes I applied are as follows:

 regr = MLPRegressor(hidden_layer_sizes=(60), max_iter=200, alpha=1e-4,

 solver='lbfgs', verbose=10, tol=1e-4, random_state=1,

 learning_rate_init=.1)

Appendix B Multi-Layer Perceptron

Applied to the Fuel Economy Use

Case

http://scikit-learn.org/stable/modules/generated/sklearn.neural_network.MLPRegressor.html#sklearn.neural_network.MLPRegressor
http://scikit-learn.org/stable/modules/generated/sklearn.neural_network.MLPRegressor.html#sklearn.neural_network.MLPRegressor
http://scikit-learn.org/stable/modules/generated/sklearn.neural_network.MLPRegressor.html#sklearn.neural_network.MLPRegressor

322 MACHINE LEARNING: A QUANTITATIVE APPROACH

 # Train the model using the training sets

 regr.fit(first_half_x, first_half_y.ravel())

As you see, it’s so easy to change to a different model after you have understood all the basic concepts

associated with various machine learning models. Now if you look at the parameters for the

MLRegressor model shown above, it should be obvious to you if you have studied chapters 1-9 in the

main text. Here, we only need to check out how the hidden layers are supposed to be specified and what

solvers are available.

As of now, we specified hidden_layer_sizes=(60) and solver='lbfgs' for the MLP model we are going to

try out. In this case, the hidden layer is a single layer with 60 neurons. The hidden layers are specified in

the format of (m, n,…), which is a Python tuple, with each number specifying the number of neurons for

that particular layer. The solver lbfgs is an optimizer in the family of quasi-Newton methods.

Figure B.1 shows the result obtained with executing the above MLP model. It is close to the quadratic

model result shown in Figure 2.9 in the main text. The MSE, RMSE and R-squared score are 16.75, 4.09

and 0.81, respectively, comparable to the corresponding metrics of 16.51, 4.06, and 0.82 obtained for

Figure 2.9. However, this simple example shows many aspects of typical neural network models. If you

are interested, you can even check out how the back propagation algorithm is implemented exactly in

sklearn.

Figure B.1 The multi-layer perceptron model applied to the fuel economy machine learning use case.

B.2 THE EFFECTS OF THE NUMBER OF NEURONS

APPENDIX B: MULTI-LAYER PERCEPTRON APPLIED TO THE FUEL ECONOMY USE CASE 323

Now let’s check out the effects of the number of neurons in this use case. I re-used the previous script

vehicles_mlp_mean.py and renamed it vehicles_mlp_mean_neurons.py, with the following changes

made:

 colors = ['green', 'blue', 'red', 'purple', 'yellow']

 for i, neuron in enumerate([10, 50, 100, 200, 400]):

 regr = MLPRegressor(hidden_layer_sizes=(neuron,), max_iter=200, alpha=1e-4,

 solver='lbfgs', tol=1e-4, random_state=1,learning_rate_init=.1)

 # Train the model using the training sets

 regr.fit(first_half_x, first_half_y.ravel())

 # Make predictions using the testing set

 second_half_y_pred = regr.predict(second_half_x)

 print("\tModel parameters: ", regr.get_params(deep=False))

 # mean squared error

 mse = mean_squared_error(second_half_y, second_half_y_pred)

 rmse = np.sqrt(mse)

 print("Mean squared error: %.2f" % mse)

 print("Root mean squared error: %.2f" % rmse)

 # Explained variance score: 1 is perfect prediction

 print('R-squared score: %.2f' % r2_score(second_half_y, second_half_y_pred))

 plt.plot(second_half_x, second_half_y_pred, linewidth=2, color=colors[i],

 label="neurons = %s" % str(neuron))

 plt.scatter(first_half_x, first_half_y, color='green', label = "training set")

 plt.scatter(second_half_x, second_half_y, color='red', label = "testing set")

 plt.xlabel ("Engine displacement (liter)")

 plt.ylabel ("Fuel economy (MPG)")

 plt.legend(loc='upper right')

 plt.show()

The above script loops through five settings for the number of neurons equal to 10, 50, 100, 200, and

400, respectively. The effects of the number of neurons are shown in Figure B.2. As is seen, fittings are

differentiable from 10 to 50 and 100 neurons, but once surpassing 100 neurons , results for 100, 200,

and 400 neurons are not quite distinguishable. This means that 100 neurons are sufficient for this single-

layer perceptron model.

Next, we explore how the results would change with the number of layers.

324 MACHINE LEARNING: A QUANTITATIVE APPROACH

Figure B.2 Effects of varying number of neurons with a single layer perceptron.

B.3 THE EFFECTS OF THE NUMBER OF LAYERS

Now let’s check out the effects of the number of layers for the MLP model we use in this use case. I re-

used the previous script vehicles_mlp_mean_neurons.py and renamed it

vehicles_mlp_mean_layers.py, with the following changes made:

 layer = (100,)

 colors = ['green', 'blue', 'red', 'purple']

 for i in range(0, 4):

 print("layer = ", layer, "\n")

 regr = MLPRegressor(hidden_layer_sizes=layer, max_iter=200, alpha=1e-4,

 solver='lbfgs', tol=1e-4, random_state=1,learning_rate_init=.1)

 # Train the model using the training sets

 regr.fit(first_half_x, first_half_y.ravel())

……

 plt.plot(second_half_x, second_half_y_pred, linewidth=2, color=colors[i],

 label="mlp_layers %s" % str(layer))

 layer = layer + layer

APPENDIX B: MULTI-LAYER PERCEPTRON APPLIED TO THE FUEL ECONOMY USE CASE 325

……

As is seen, we started with a single layer with 100 neurons. Then we doubled the number of layers from

1 to 2, 4, and 8, for a total of four runs. Figure B.3 shows the results. We start to see overfitting with

eight layers indicated by the purple curve with the increasing model complexity. However, the MSE,

RMSE and R squared score did not change much, as that overfitting occurred at the lower end only.

Figure B.3 Effects of varying number of layers with a multi-layer perceptron.

B.4 THE EFFECTS THE ACTIVATION FUNCTIONS

Now let’s check out the effects of the activation functions for the MLP model used in this use case. I re-

used the previous script vehicles_mlp_mean_layerss.py and renamed it

vehicles_mlp_mean_activations.py, with the following changes made:

 activations = ['identity', 'logistic', 'tanh', 'relu']

 for activation in activations:

 regr = MLPRegressor(hidden_layer_sizes=(100,), activation=activation,

 max_iter=200, alpha=1e-4, solver='lbfgs', verbose=10, tol=1e-4,

 random_state=1,learning_rate_init=.1)

 ……

As shown in Figure B.4, the identity activation function is equivalent to a linear model, while the tanh

and logistic activations performed poorly against the ReLU activation function. This is why the ReLU

activation function has been used unanimously for various ANNs, such as CNNs, RNNs and AEs

introduced in Chapters 10, 11 and 12, respectively.

326 MACHINE LEARNING: A QUANTITATIVE APPROACH

Figure B.4 Single-layer perceptron with different activation functions.

B.5 THE EFFECTS THE SOLVERS

Now let’s check out the effects of the solvers for the MLP model we choose in this use case. I re-used

the previous script vehicles_mlp_mean_activations.py and renamed it

vehicles_mlp_mean_solvers.py, with the following changes made:

 solvers = ['lbfgs', 'sgd', 'adam']

 for solver in solvers:

 regr = MLPRegressor(hidden_layer_sizes=(100,), max_iter=200, alpha=1e-4,

 solver=solver, verbose=10, tol=1e-4,

random_state=1,learning_rate_init=.1)

 ……

Fig B.5 shows the result. It is seen that the sgd and adam solvers are totally off the track, compared with

the lbfgs solver. It should not be a surprise as we already learnt in Part I for the conventional models that

the lbfgs solver is more stable in general.

APPENDIX B: MULTI-LAYER PERCEPTRON APPLIED TO THE FUEL ECONOMY USE CASE 327

Figure B.5 Single-layer perceptron with different solvers.

B.6 THE MLP MODEL FOR CLASSIFICATION TASKS

The MLP model can also be used for classification tasks. If you are interested, check out an example at

http://scikit-learn.org/stable/modules/generated/sklearn.neural_network.MLPClassifier.html. Given what

you have learnt so far, you should be able to understand that example easily.

http://scikit-learn.org/stable/modules/generated/sklearn.neural_network.MLPClassifier.html

