
 

 

 

Note: This appendix is also available as a colored version of PDF from this book‟s download website.  

This appendix demonstrates a few example CNN implementations with Caffe in C++, YOLOv3 in C and 

PyTorch in Python. We choose the Caffe, YOLOv3 and PyTorch deep learning frameworks, as they are 

three of the most popular frameworks for solving computer vision related machine learning tasks. 

Besides, if you decide to have a career in machine learning, you will have a huge advantage if you have 

good programming skills in Python and C/C++.  However, you don‟t have to be a C/C++ expert to try 

out the example CNN models with Caffe, YOLOv3 and PyTorch to be introduced in this appendix. 

Some basic knowledge about how Python and C/C++ work in general and how Unix shell scripts work 

would be sufficient. 

I have to mention that YOLOv3 perhaps is the state of the art deep learning framework that you may 

want to focus on if you look for a production-quality DL framework. You can jump to YOLO directly, 

which starts with §C.2 The YOLOv3 Framework. Otherwise, let‟s start with Caffe first next. 

C.1 THE CAFFE FRAMEWORK 

Since Caffe is written in C++, you have to build it from the source in order to make it run on your 

machine. I‟ll show you how to build the Caffe framework from the source next. 

C.1.1 BUILDING THE CAFFE FRAMEWORK FROM THE SOURCE 

First, let‟s see how we can build the Caffe framework from the source. By going through such a process, 

you will have the following benefits: 

▪ You will understand what other software packages that Caffe depends on.  

▪ You will have access to the C++ source files of Caffe, just in case you want to check out how this 

popular, production quality framework is implemented in C++.  

Appendix C CNN Examples with 

Caffe, YOLOv3 and PyTorch 
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▪ As a machine learning engineer, it‟s important that you can quickly get a framework up and running 

on your machine and start to get your project going immediately. 

Next, I‟ll share with you how I rebuilt Caffe on my MacBook Pro by following the instructions given at 

http://caffe.berkeleyvision.org/install_osx.html, especially, what worked and what didn‟t work, and how 

I worked around the issues I encountered. If you go along yourself, it may take you several days, but 

with the help of this appendix, it could be much easier for you, especially if you are not very familiar 

with C++ and a typical Unix-like environment. Of course, if you are already a C++ professional, it would 

be easy for you. 

The installation of Caffe starts with installing some general dependencies. On macOS, you need to have 

homebrew installed on your machine first. If you do not have homebrew installed already on your 

machine, search online and get it installed first. 

Then, follow the below procedure: 

1. Download the latest Caffe source at https://github.com/BVLC/caffe and place it in a directory on 

your machine. For example, I downloaded and placed it on my machine at 

/Users/henryliu/mspc/devs/ws_cpp/Caffe. This is my Eclipse C/C++ workspace directory, as I can 

navigate and view various files easily on such an IDE. Also, add a line in your .bashrc file, e.g., 

export CAFFE_ROOT=/Users/henryliu/mspc/devs/ws_cpp/Caffe, to set the CAFFE_ROOT 

environment variable. You will need this when you try out some of the CNN models on Caffe 

later. In case you are not familiar with Unix environment, execute “source ~/.bashrc” on a 

command terminal to enable all environment variables defined in that file. 

2. Execute “cd $CAFFE_ROOT” on the command terminal and then execute brew install -vd snappy 

leveldb gflags glog szip lmdb by copying this command from that website to your local command 

terminal. Table C.1 describes what these dependencies are about. 

3. The next command to execute is: brew tap homebrew/science, which did not work on my machine 

as it does not exist anymore. It turned out that you can just ignore it. 

4. Execute brew install hdf5 opencv. Check out what opencv is about from Table C.1. 

5. I don‟t use Anaconda since it once messed up my Python environment on my machine. Therefore, 

I chose the option of  no Anaconda for the next part of the installation. 

6. Execute brew install --build-from-source --with-python -vd protobuf. Check out what protobuf is 

about from Table C.1. 

7. Execute brew install --build-from-source -vd boost boost-python. Check out what boost is about 

from Table C.1. 

8. Execute brew install protobuf boost.  

9. Next, it mentions that BLAS is already installed as the Accelerate/vecLib framework, which is 

Apple‟s implementation of BLAS. Check out what BLAS is about from Table C.1.  

The dependency installation is completed now. Next, compile Caffe by following the procedure given 

after Table C.1. 

Table C.1 Caffe dependencies 

Feature Semantics 

snappy A fast compressor/decompressor written in C++. 

http://caffe.berkeleyvision.org/install_osx.html
https://github.com/BVLC/caffe
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leveldb 
A fast key-value storage library written in C++ at Google that provides an ordered 

mapping from string keys to string values. 

gflags A C++ library that implements command line flags processing. 

glog C++ implementation of the Google logging module. 

szip 

Provides lossless compression of scientific data from HDF5, which is a unique 

technology suite that makes possible the management of extremely large and complex 

data collections. 

lmdb A Btree-based Lightning Memory-Mapped Database Manager (LMDB). 

opencv 

OpenCV stands for Open Source Computer Vision Library. Written in optimized C/C++, 

the library can take advantage of multi-core processing. Enabled with OpenCL, it can 

take advantage of the hardware acceleration of the underlying heterogeneous compute 

platform. 

protobuf Protocol Buffers - Google's data interchange format. 

boost 

Over 80 C++ based individual libraries for tasks and data structures such as linear 

algebra, pseudorandom number generation, multithreading, image processing, regular 

expressions, and unit testing. 

BLAS 

The BLAS (Basic Linear Algebra Subprograms) are routines that provide standard 

building blocks for performing basic vector and matrix operations. The Level 1 BLAS 

perform scalar, vector and vector-vector operations, the Level 2 BLAS perform matrix-

vector operations, and the Level 3 BLAS perform matrix-matrix operations. Because the 

BLAS are efficient, portable, and widely available, they are commonly used in the 

development of high quality linear algebra software. 

To compile Caffe, it became tricky in my case. I followed the instructions under the section named  

Compilation with Make and it ended up with the following error: 

Undefined symbols for architecture x86_64: 
  "cv::imread(cv::String const&, int)", referenced from: 
      caffe::WindowDataLayer<float>::load_batch(caffe::Batch<float>*) in window_data_layer.o 
      caffe::WindowDataLayer<double>::load_batch(caffe::Batch<double>*) in window_data_layer.o 
      caffe::ReadImageToCVMat(std::__1::basic_string<char, std::__1::char_traits<char>, std::__1::allocator<char> > 
const&, int, int, bool) in io.o 
  "cv::imdecode(cv::_InputArray const&, int)", referenced from: 
      caffe::DecodeDatumToCVMatNative(caffe::Datum const&) in io.o 
      caffe::DecodeDatumToCVMat(caffe::Datum const&, bool) in io.o 
  "cv::imencode(cv::String const&, cv::_InputArray const&, std::__1::vector<unsigned char, 
std::__1::allocator<unsigned char> >&, std::__1::vector<int, std::__1::allocator<int> > const&)", referenced from: 
      caffe::ReadImageToDatum(std::__1::basic_string<char, std::__1::char_traits<char>, std::__1::allocator<char> > 
const&, int, int, int, bool, std::__1::basic_string<char, std::__1::char_traits<char>, std::__1::allocator<char> > 
const&, caffe::Datum*) in io.o 
ld: symbol(s) not found for architecture x86_64 
clang: error: linker command failed with exit code 1 (use -v to see invocation) 
make: *** [.build_release/lib/libcaffe.so.1.0.0] Error 1 
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I spent a lot of time searching online and nothing helped. Then, it worked when I followed the 

instructions under the section named CMake Build. Therefore, the procedure given below is based on my 

experience with CMake Build: 

▪ cd $CAFFE_ROOT 

▪ cp Makefile.config.example Makefile.config. Then, in my case, I opened the Makefile.config file and 

made two  changes: 

 Uncommented the line of CPU_ONLY := 1, since I do not have a GPU on my machine. 

 Uncommented the lines for using Python 3 instead of 2. 

▪ Then, I executed each of the following commands as instructed: 

$mkdir build 
$cd build 
$cmake .. 
$make all 
$make install 
$make runtest 

All of the above commands were successful. However, I tried the command make distribute and 

encountered the error of “target not defined.” This was okay as I wanted to run Caffe on my local 

machine anyway. Figure C.1 shows the code structure of the Caffe framework on my C/C++ Eclipse 

IDE. 

If you have gotten to this step, you are ready to try out a few example CNN models as described in the 

next few sections. 

 
 

Figure C.1 Code structure of the Caffe framework. 

C.1.2 THE LENET CNN MODEL FOR THE MNIST DATASET WITH CAFFE 
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Caffe has many examples available. However, it‟s better to start with the MNIST dataset, not because 

you are already familiar with the MNIST dataset, but because this example contains detailed descriptions 

about how to define a CNN model to work with Caffe. Therefore, let‟s get started with this example first. 

Once again, make sure you have the CAFFE_ROOT environment variable set in your environment per 

instructions given in the previous section. 

C.1.2.1 PREPARE THE MNIST DATASET 

First, if you don‟t have wget installed on your machine, execute the following command to get it 

installed: 

$brew install wget --with-libressl 

Then, execute the following commands: 

$cd $CAFFE_ROOT 
$./data/mnist/get_mnist.sh 
$./examples/mnist/create_mnist.sh 

After executing the above commands, you should have four files with their names ending with –ubyte in 

the data/mnist directory. These are the training and testing dataset we will use. 

C.1.2.2 DEFINING THE LENET MODEL 

Next, the instruction explains about the LeNet model to be used with the MNIST dataset we have just 

prepared. I assume that you have studied Chapter 10 of the main text, so I would not repeat about the 

LeNet here. However, there is a deviation here: The Caffe model here uses the ReLU activation function 

instead of the sigmoid function as was the case with the original LeNet model, since it has become 

common knowledge that the ReLU activation function works better than the sigmoid activation function. 

Now, let‟s explain how Caffe defines a CNN model. With Caffe, each model is defined in a text file, 

e.g., the file $CAFFE_ROOT/examples/mnist/lenet_train_test.prototxt in this case for the LeNet 

model. You can now open this file and examine its contents. It starts with a line of name: “LeNet”, 
followed by 11 segments labeled “layer.” To understand this model definition file, perhaps this is a 

good time for me to help you understand several Caffe jargons as follows: 

▪ Blobs. Caffe stores and communicates data in 4D arrays called Blobs. 

▪ Models. Caffe models are saved to disk using Google Protocol Buffers. 

▪ Data. Caffe stores large scale data in LevelDB databases. 

▪ Layer. Defines one or more blobs as input or output to be used in forward and backward passes. 

▪ Layer Types. Include: data, convolution, pooling, inner products (ip‟s), nonlinearities (ReLU, 

logistic, etc.), local response normalization, element-wise operations, losses (softmax, hinge, etc.), 

and so on. 

Given what we have covered in the main text, you should have no difficulties understanding the above 

concepts.  

Defining a data layer 

The data layers define the data and label blobs for the training and testing datasets, as shown in Listing 

C.1. Here, every item is obvious except that (1) the transform_param segment defines how data should 
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be transformed, e.g., scaled or normalized by being multiplied with a number 0.00390625, which is just 

the reciprocal of 256, and (2) the data_param segment defines the data source. In addition, this one file 

defines data blobs with the include attribute for both the training phase and the testing phase, and Caffe 

knows which data blob to choose, based on the phase it is in. These are called layer rules, which are 

defined in a large file in $CAFFE_ROOT/src/caffe/proto/caffe.proto. You can take a quick look at 

this file to get an idea on how Caffe rules are defined. 

Next, we discuss the convolution layer. 

Listing C.1. MNIST training and testing data layers with Caffe 

layer { 

  name: "mnist" 

  type: "Data" 

  top: "data" 

  top: "label" 

  include { 

    phase: TRAIN 

  } 

  transform_param { 

    scale: 0.00390625 

  } 

  data_param { 

    source: "examples/mnist/mnist_train_lmdb" 

    batch_size: 64 

    backend: LMDB 

  } 

} 

layer { 

  name: "mnist" 

  type: "Data" 

  top: "data" 

  top: "label" 

  include { 

    phase: TEST 

  } 

  transform_param { 

    scale: 0.00390625 

  } 

  data_param { 

    source: "examples/mnist/mnist_test_lmdb" 

    batch_size: 100 

    backend: LMDB 

  } 

} 

Defining a convolution layer with Caffe 
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Listing C.2 shows how a convolution layer is defined. It can be understood as follows: 

▪ The bottom attribute defines the prior layer while the top attribute defines the current layer. 

▪ The param attributes define the learning rate multipliers for the weights and biases, respectively. In 

this case, the weights multiplier is 1 and the biases multiplier is 2, which are applied to the learning 

rate determined by the solver during runtime. 

▪ The convolution_param attribute defines the settings for carrying out the convolution. In this case, 

it specifies 20 output channels with a kernel size of 5 and a stride of 1. 

▪ The weight_filler attribute specifies how weights should be randomly initialized. In this case, it 

specifies to use the Xavier algorithm to automatically determine the scale of initialization based on 

the number of input and output neurons. 

▪ The bias_filler attribute specifies how biases should be initialized. In this case, it specifies that 

biases should be initialized as constant, with the default filling value of 0. 

Next, we discuss how a pooling layer is defined with Caffe. 

Listing C.2 A convolution layer defined with Caffe 

layer { 

  name: "conv1" 

  type: "Convolution" 

  bottom: "data" 

  top: "conv1" 

  param { 

    lr_mult: 1 

  } 

  param { 

    lr_mult: 2 

  } 

  convolution_param { 

    num_output: 20 

    kernel_size: 5 

    stride: 1 

    weight_filler { 

      type: "xavier" 

    } 

    bias_filler { 

      type: "constant" 

    } 

  } 

} 

Defining a pooling layer with Caffe 

Listing C.3 shows how a pooling layer can be defined with Caffe. In this case, it specifies which 

convolution layer to follow as defined by the bottom attribute, and the pooling settings such as using the 

max pooling with a kernel size of 2 and a stride of 2.  In this case, there are no overlaps between 

neighboring pooling regions. 



336                        MACHINE LEARNING: A QUANTITATIVE APPROACH

 

   

Next, we discuss how a fully connected layer is defined with Caffe. 

Listing C.3 A pooling layer defined with Caffe 

layer { 

  name: "pool1" 

  type: "Pooling" 

  bottom: "conv1" 

  top: "pool1" 

  pooling_param { 

    pool: MAX 

    kernel_size: 2 

    stride: 2 

  } 

} 

Defining a fully connected layer with Caffe 

Listing C.4 shows how a fully connected layer, which designated as type InnerProduct, can be defined 

with Caffe. In this case, it specifies which layer to follow as defined by the bottom attribute, and uses an 

inner_product_param attribute to specify the number of outputs as well as the weight and bias fillers.  

Next, we discuss how an ReLU layer is defined with Caffe. 

Listing C.4 A fully connected layer defined with Caffe 

layer { 

  name: "ip1" 

  type: "InnerProduct" 

  bottom: "pool2" 

  top: "ip1" 

  param { 

    lr_mult: 1 

  } 

  param { 

    lr_mult: 2 

  } 

  inner_product_param { 

    num_output: 500 

    weight_filler { 

      type: "xavier" 

    } 

    bias_filler { 

      type: "constant" 

    } 

  } 

} 

Defining an ReLU layer with Caffe 
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Listing C.5 shows how an ReLU layer can be defined with Caffe. In this case, both the bottom attribute 

and the top attribute are specified to be the same fully connected layer, which makes sense as an ReLU 

is not necessarily a layer by itself at all – it just performs an element-wise operation, which can be done 

in-place to save memory. 

However, note how Listing C.6 defines another fully connected layer, following the ReLU layer 

described in Listing C.5. In particular, the ip1 layer, not the relu1 layer, is assigned to the bottom 

attribute, as an ReLU layer is more of an element-wise operation than an actual layer. 

Next, we discuss how an accuracy layer is defined with Caffe. 

Listing C.5 An ReLU layer defined with Caffe 

layer { 

  name: "relu1" 

  type: "ReLU" 

  bottom: "ip1" 

  top: "ip1" 

} 

Listing C.6 A fully connected layer following an ReLU layer defined with Caffe 

layer { 

  name: "ip2" 

  type: "InnerProduct" 

  bottom: "ip1" 

  top: "ip2" 

  param { 

    lr_mult: 1 

  } 

  param { 

    lr_mult: 2 

  } 

  inner_product_param { 

    num_output: 10 

    weight_filler { 

      type: "xavier" 

    } 

    bias_filler { 

      type: "constant" 

    } 

  } 

} 

Defining an accuracy layer with Caffe 
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Listing C.7 shows how an accuracy layer can be defined with Caffe. In this case, two bottom attributes 

are specified as inputs, the ip2 layer and the label “layer.”  It also specifies that this layer should be 

used in the TEST phase. 

Next, we discuss how a loss layer is defined with Caffe. 

Listing C.7 An accuracy layer defined with Caffe  

layer { 

  name: "accuracy" 

  type: "Accuracy" 

  bottom: "ip2" 

  bottom: "label" 

  top: "accuracy" 

  include { 

    phase: TEST 

  } 

} 

Defining a loss layer with Caffe 

Listing C.8 shows how a loss layer can be defined with Caffe, which should be the final layer of a CNN 

model with Caffe. In this case, two bottom attributes are specified as inputs, the ip2 layer and the label 

“layer.”  The ip2 layer provides predictions while the label layer provides target values, both of which 

are used for computing the loss, which is the basis for the back-propagation algorithm to work. 

Next, we discuss how the solver is defined with Caffe for the LetNet model with the MNIST dataset. 

Listing C.8 A loss layer defined with Caffe 

layer { 

  name: "loss" 

  type: "SoftmaxWithLoss" 

  bottom: "ip2" 

  bottom: "label" 

  top: "loss" 

} 

C.1.2.3 DEFINING THE SOLVER FOR THE MNIST DATASET WITH CAFFE 

The file $CAFFE_ROOT/examples/mnist/lenet_solver.prototxt defines the solver, which specifies 

the end-to-end process for running the entire job. Listing C.9 shows the entire contents of this file. Since 

we have basic concepts covered in the main text and every line is clearly annotated, we would not spend 

time to explain every line, except that the solver_mode specified at the end of the file should be changed 

to CPU if you do not have a GPU equipped with your machine. 

Listing C.9 lenet_solver.prototxt 
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# The train/test net protocol buffer definition 

net: "examples/mnist/lenet_train_test.prototxt" 

# test_iter specifies how many forward passes the test should carry out. 

# In the case of MNIST, we have test batch size 100 and 100 test iterations, 

# covering the full 10,000 testing images. 

test_iter: 100 

# Carry out testing every 500 training iterations. 

test_interval: 500 

# The base learning rate, momentum and the weight decay of the network. 

base_lr: 0.01 

momentum: 0.9 

weight_decay: 0.0005 

# The learning rate policy 

lr_policy: "inv" 

gamma: 0.0001 

power: 0.75 

# Display every 100 iterations 

display: 100 

# The maximum number of iterations 

max_iter: 10000 

# snapshot intermediate results 

snapshot: 5000 

snapshot_prefix: "examples/mnist/lenet" 

# solver mode: CPU or GPU 

solver_mode: CPU 

C.1.2.4 KICKING OFF TRAINING AND TESTING WITH CAFFE 

The examples/mnist/lenet_train_test.prototxt and examples/mnist/lenet_solver.prototxt 

files are called Caffe protobuf files. Once they are prepared, just run the following two commands to 

kick off training and testing:  

cd $CAFFE_ROOT 
./examples/mnist/train_lenet.sh 

The command specified in the script train_lenet.sh is as follows: 

./build/tools/caffe train --solver=examples/mnist/lenet_solver.prototxt 

As you see, use Caffe to solve an applicable machine learning problem consists of the following three 

steps: 

1. Compose a network model definition file similar to the lenet_train_test.prototxt file. 

2. Compose a job process definition file similar to the lenet_solver.prototxt file. 

3. Compose a script similar to the script train_lenet.sh and run it. 

Listing C.10 shows running the above MNIST LeNet model with Caffe on my machine. Note that I just 

picked a few segments for illustrative purposes. As you can see, the test started at 21:57:27 and ended at 

22:03:19 for a total duration of 4m36s, with an accuracy of 99.09% achieved after 10000 iterations! This 

is outstanding performance by any means. 
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Listing C.10 Sample output of running the MNIST LeNet model with Caffe 

henryliu:Caffe henryliu$ ./examples/mnist/train_lenet.sh 
I0310 21:57:27.226054 2508161984 caffe.cpp:197] Use CPU. 
I0310 21:57:27.227905 2508161984 solver.cpp:45] Initializing solver from parameters:  
…… 
0310 21:57:27.230612 2508161984 layer_factory.hpp:77] Creating layer mnist 
I0310 21:57:27.231889 2508161984 db_lmdb.cpp:35] Opened lmdb examples/mnist/mnist_train_lmdb 
I0310 21:57:27.232677 2508161984 net.cpp:84] Creating Layer mnist 
I0310 21:57:27.232699 2508161984 net.cpp:380] mnist -> data 
I0310 21:57:27.232717 2508161984 net.cpp:380] mnist -> label 
I0310 21:57:27.232748 2508161984 data_layer.cpp:45] output data size: 64,1,28,28 
I0310 21:57:27.237839 2508161984 net.cpp:122] Setting up mnist 
I0310 21:57:27.237856 2508161984 net.cpp:129] Top shape: 64 1 28 28 (50176) 
I0310 21:57:27.237865 2508161984 net.cpp:129] Top shape: 64 (64) 
…… 
I0310 21:58:13.941082 2508161984 solver.cpp:239] Iteration 1300 (33.0033 iter/s, 3.03s/100 iters), loss = 
0.0233421 
I0310 21:58:13.941115 2508161984 solver.cpp:258]     Train net output #0: loss = 0.0233422 (* 1 = 0.0233422 loss) 
I0310 21:58:13.941123 2508161984 sgd_solver.cpp:112] Iteration 1300, lr = 0.00912412 
I0310 21:58:16.960737 2508161984 solver.cpp:239] Iteration 1400 (33.1236 iter/s, 3.019s/100 iters), loss = 
0.00798987 
I0310 21:58:16.960772 2508161984 solver.cpp:258]     Train net output #0: loss = 0.00798988 (* 1 = 0.00798988 
loss) 
I0310 21:58:16.960778 2508161984 sgd_solver.cpp:112] Iteration 1400, lr = 0.00906403 
I0310 21:58:19.946302 2508161984 solver.cpp:351] Iteration 1500, Testing net (#0) 
…… 
I0310 22:03:13.821404 2508161984 sgd_solver.cpp:112] Iteration 9900, lr = 0.00596843 
I0310 22:03:16.879815 2508161984 solver.cpp:468] Snapshotting to binary proto file 
examples/mnist/lenet_iter_10000.caffemodel 
I0310 22:03:16.900782 2508161984 sgd_solver.cpp:280] Snapshotting solver state to binary proto file 
examples/mnist/lenet_iter_10000.solverstate 
I0310 22:03:16.918725 2508161984 solver.cpp:331] Iteration 10000, loss = 0.00294297 
I0310 22:03:16.918767 2508161984 solver.cpp:351] Iteration 10000, Testing net (#0) 
I0310 22:03:19.175561 131223552 data_layer.cpp:73] Restarting data prefetching from start. 
I0310 22:03:19.274293 2508161984 solver.cpp:418]     Test net output #0: accuracy = 0.9909 
I0310 22:03:19.274327 2508161984 solver.cpp:418]     Test net output #1: loss = 0.0286514 (* 1 = 0.0286514 loss) 
I0310 22:03:19.274333 2508161984 solver.cpp:336] Optimization Done. 
I0310 22:03:19.274336 2508161984 caffe.cpp:250] Optimization Done. 

C.1.3 ALEX’S CIFAR-10 WITH CAFFE 

If you have successfully completed the previous exercise, then you have learnt how Caffe works! You 

can verify your learning with this second Caffe deep learning CNN example. 

First, let‟s learn a bit about the CIFAR-10 dataset. This is a dataset created by Alex Krizhevsky at the 

Canadian Institute for Advanced Research (CIFAR), with 10 classes of images of 32x32 pixels. It has 

6000 images per class, for a total of 60,000 images. Out of 60,000 images, 50,000 are used as training 

images and 10,000 are used as test images. The 50,000 training images are split into 5 batches, with each 
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batch containing 10,000 images. Figure C.2 shows 10 sample images for each of the 10 classes. You can 

find more about this dataset at https://www.cs.toronto.edu/~kriz/cifar.html.  

 

Figure C.2 Samples for Alex‟s CIFAR-10 dataset. 

Now, in terms of trying out this dataset with Caffe, I‟d like to take a different approach. In the previous 

section with the MNIST dataset, we first examined the model description file, then the job description 

file, and finally the script for kicking off the training process. For this example, I‟d like to reverse the 

process, namely, we first look at the script for kicking off the training process, then the job description 

file, and finally the model definition file. I feel this may help you understand how Caffe framework 

works better. 

C.1.3.1 THE SCRIPT FOR KICKING OFF THE TRAINING PROCESS 

Listing C.11 shows the script $CAFFE_ROOT/examples/cifar10/train_quick.sh. It requires to have 

two job description files to feed to the solver: cifar10_quick_solver.prototxt and 

cifar10_quick_solver_lr1.prototxt, which will be discussed in the next section. The trained model 

is saved to a snapshot file named cifar10_quick_iter_4000.solverstate.  

Listing C.11CIFAR-10 train-quick.sh script 

#!/usr/bin/env sh 

set -e 

 

TOOLS=./build/tools 

 

$TOOLS/caffe train \ 

  --solver=examples/cifar10/cifar10_quick_solver.prototxt $@ 

https://www.cs.toronto.edu/~kriz/cifar.html
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# reduce learning rate by factor of 10 after 8 epochs 

$TOOLS/caffe train \ 

  --solver=examples/cifar10/cifar10_quick_solver_lr1.prototxt \ 

  --snapshot=examples/cifar10/cifar10_quick_iter_4000.solverstate $@ 

C.1.3.2 THE JOB DESCRIPTION FILES 

Listings C.12 and C.13 show the two job description files: cifar10_quick_solver.prototxt and 

cifar10_quick_solver_lr1.prototxt, respectively. This can be considered a two-phase training, 

with the learning rate reduced to 10x smaller in the second training phase. Note also that by default, the 

solver_mode was set to GPU, but I have changed it to CPU for the same reason explained in the 

previous section. You should do the same if you do not have a GPU installed on your machine. 

Next, we check out the model definition file for this example. 

Listing C.12 The cifar10_quick_solver.prototxt file 

# reduce the learning rate after 8 epochs (4000 iters) by a factor of 10 

 

# The train/test net protocol buffer definition 

net: "examples/cifar10/cifar10_quick_train_test.prototxt" 

# test_iter specifies how many forward passes the test should carry out. 

# In the case of MNIST, we have test batch size 100 and 100 test iterations, 

# covering the full 10,000 testing images. 

test_iter: 100 

# Carry out testing every 500 training iterations. 

test_interval: 500 

# The base learning rate, momentum and the weight decay of the network. 

base_lr: 0.001 

momentum: 0.9 

weight_decay: 0.004 

# The learning rate policy 

lr_policy: "fixed" 

# Display every 100 iterations 

display: 100 

# The maximum number of iterations 

max_iter: 4000 

# snapshot intermediate results 

snapshot: 4000 

snapshot_prefix: "examples/cifar10/cifar10_quick" 

# solver mode: CPU or GPU 

solver_mode: CPU 

Listing C.13 The cifar10_quick_solver_lr1.prototxt file 

# reduce the learning rate after 8 epochs (4000 iters) by a factor of 10 
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# The train/test net protocol buffer definition 

net: "examples/cifar10/cifar10_quick_train_test.prototxt" 

# test_iter specifies how many forward passes the test should carry out. 

# In the case of MNIST, we have test batch size 100 and 100 test iterations, 

# covering the full 10,000 testing images. 

test_iter: 100 

# Carry out testing every 500 training iterations. 

test_interval: 500 

# The base learning rate, momentum and the weight decay of the network. 

base_lr: 0.0001 

momentum: 0.9 

weight_decay: 0.004 

# The learning rate policy 

lr_policy: "fixed" 

# Display every 100 iterations 

display: 100 

# The maximum number of iterations 

max_iter: 5000 

# snapshot intermediate results 

snapshot: 5000 

snapshot_format: HDF5 

snapshot_prefix: "examples/cifar10/cifar10_quick" 

# solver mode: CPU or GPU 

solver_mode: CPU 

C.1.3.3 THE MODEL DEFINITION FILE 

Listing C.14 shows the model definition file for this example. It‟s kind of lengthy, but not very different 

from the model file we discussed in the previous section for the MNIST dataset, except that it has more 

layers. Please take your time and go through it end to end to make sure that you understand it, or even 

better, make a sketch drawing by going through all layers from bottom to top.  

Listing C.14 The model definition file for the Caffe CIFAR-10 example (partial)

name: "CIFAR10_quick" 

layer { 

  name: "cifar" 

  type: "Data" 

  top: "data" 

  top: "label" 

  include { 

    phase: TRAIN 

  } 

  transform_param { 

    mean_file: 

"examples/cifar10/mean.binaryproto" 

  } 

  data_param { 

    source: 

"examples/cifar10/cifar10_train_lmdb" 

    batch_size: 100 

    backend: LMDB 

  } 

} 

layer { 

  name: "cifar" 

  type: "Data" 

  top: "data" 

  top: "label" 

  include { 
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    phase: TEST 

  } 

  transform_param { 

    mean_file: 

"examples/cifar10/mean.binaryproto" 

  } 

  data_param { 

    source: 

"examples/cifar10/cifar10_test_lmdb" 

    batch_size: 100 

    backend: LMDB 

  } 

} 

…… 

layer { 

  name: "accuracy" 

  type: "Accuracy" 

  bottom: "ip2" 

  bottom: "label" 

  top: "accuracy" 

  include { 

    phase: TEST 

  } 

} 

layer { 

  name: "loss" 

  type: "SoftmaxWithLoss" 

  bottom: "ip2" 

  bottom: "label" 

  top: "loss" 

} 

C.1.3.4 RUNNING THE CIFAR-10 EXAMPLE 

I ran this example successfully on my machine, except that it took close to an hour to download the 

CIFAR-10 dataset of ~170MB, due to my slow wifi connection. Listing C.15 shows the final accuracy of 

75.68%.  

If you want to try it out, make necessary changes such as the solver_mode, and then run the following 

commands on your machine to get it going: 

$cd $CAFFE_ROOT 
$./examples/cifar10/train_quick.sh 

If you encounter any issues, check out http://caffe.berkeleyvision.org/gathered/examples/cifar10.html for 

more detailed instructions. 

Listing C.15 Sample output of running the CIFAR-10 example 

……. 
I0310 14:35:48.097317 2508161984 sgd_solver.cpp:112] Iteration 4800, lr = 0.0001 
I0310 14:36:09.057718 2508161984 solver.cpp:239] Iteration 4900 (4.77099 iter/s, 20.96s/100 iters), loss = 
0.465986 
I0310 14:36:09.057766 2508161984 solver.cpp:258]     Train net output #0: loss = 0.465986 (* 1 = 0.465986 loss) 
I0310 14:36:09.057773 2508161984 sgd_solver.cpp:112] Iteration 4900, lr = 0.0001 
I0310 14:36:29.173247 73412608 data_layer.cpp:73] Restarting data prefetching from start. 
I0310 14:36:30.006633 2508161984 solver.cpp:478] Snapshotting to HDF5 file 
examples/cifar10/cifar10_quick_iter_5000.caffemodel.h5 
I0310 14:36:30.015507 2508161984 sgd_solver.cpp:290] Snapshotting solver state to HDF5 file 
examples/cifar10/cifar10_quick_iter_5000.solverstate.h5 
I0310 14:36:30.114841 2508161984 solver.cpp:331] Iteration 5000, loss = 0.525545 
I0310 14:36:30.114869 2508161984 solver.cpp:351] Iteration 5000, Testing net (#0) 
I0310 14:36:39.559231 73949184 data_layer.cpp:73] Restarting data prefetching from start. 
I0310 14:36:39.941176 2508161984 solver.cpp:418]     Test net output #0: accuracy = 0.7568 
I0310 14:36:39.941207 2508161984 solver.cpp:418]     Test net output #1: loss = 0.735389 (* 1 = 0.735389 loss) 

http://caffe.berkeleyvision.org/gathered/examples/cifar10.html
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I0310 14:36:39.941213 2508161984 solver.cpp:336] Optimization Done. 
I0310 14:36:39.941217 2508161984 caffe.cpp:250] Optimization Done. 

C.1.4 THE IMAGENET EXAMPLE WITH CAFFE 

Given the two examples we covered in the previous sections, you should be able to follow the 

instructions at http://caffe.berkeleyvision.org/gathered/examples/imagenet.html to try out the ImageNet 

example with Caffe. If you decide to try it out, download the ImageNet data from the website at 

http://www.image-net.org/challenges/LSVRC/2012/nonpub-downloads. The entire data amounts to ~160 

GB, which could be challenging to download if you do not have a fast Internet connection. In my case, I 

downloaded the following three files at home with a cable connected to a Windows PC: 

▪ ILSVRC2012_img_train.tar of 32.96GB with 258,434 images (~22%) instead of the full set of ~1.2M 

images of ~138GB. 

▪ ILSVRC2012_img_val.tar of 6.74GB with all 50,000 images. 

▪ ILSVRC2012_img_test.tar of 13.69GB with all 100,000 images. 

Then I double-clicked on the file ILSVRC2012_img_train.tar, renamed the directory to train, created the 

following shell script, and executed it to untar all JPEG files from each tar file. 

#!/bin/bash 
for name in ./*.tar; do 
 tar_name=$(basename "$name") 
 dir_name="${tar_name%.*}" 
 #echo $dir_name 
 mkdir -p $dir_name 
 tar -xvf $name -C $dir_name  
done 

Then I followed the instructions given in the readme.md file located in the directory of 

examples/imagenet as follows: 

1. Data Preparation. I executed the script ./data/ilsvrc12/get_ilsvrc_aux.sh and downloaded the 

required auxiliary data from http://dl.caffe.berkeleyvision.org/caffe_ilsvrc12.tar.gz, which is not 

ImageNet data. After this step, the files placed in the data/ilsvrc12 directory include: 

det_synset_words.txt, imagenet_mean.binaryproto, imagenet.bet.pickle, synset_words.txt, 

synsets.txt, test.txt, train.txt, and val.txt. The imagenet_mean.binaryproto and imagenet.bet.pickle 

are binary files, while all others ending with .txt are text files. The text files describe what each 

of the images is, either with a number from 0 to 999 or an actual name. This kind of information 

had already been prepared for us, so we just use it as is. 

2. Resize Image. Now open the examples/imagenet/create_imagenet.sh file, and make two changes: 

(1) set RESIZE to true if you have not resized the images, and (2) set the path for 

TRAIN_DATA_ROOT and  VAL_DATA_ROOT so that Caffe would know where the ImageNet data 

resides. After executing this step, training and validation datasets would be inserted into the 

LevelDB database. 

3. Compute Image Mean. Caffe requires that all image data be centered around the mean, so this 

step accomplishes that. Execute the command ./examples/imagenet/make_imagenet_mean.sh and a 

file named data/ilsvrc12/imagenet_mean.binaryproto will be created. 

http://caffe.berkeleyvision.org/gathered/examples/imagenet.html
http://www.image-net.org/challenges/LSVRC/2012/nonpub-downloads
http://dl.caffe.berkeleyvision.org/caffe_ilsvrc12.tar.gz
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4. Model Definition. This example attempts to mimic the work by Krizhevsky et al. as we 

introduced in Chapter 10. The file models/bvlc_reference_caffenet/train_val.prototxt describes the 

model, as shown in Listing C.16. Although it‟s quite lengthy, all layers should be familiar to you, 

so we would not repeat explaining them. 

5. Job Definition. The file models/bvlc_reference_caffenet/solver.prototxt specifies how the training 

job should be carried out. Once again, remember to change solver_mode to CPU if you do not 

have a  GPU installed on your machine.  

6. Kick off the training job. When you are ready, simply kick off the training job by executing the 

command ./build/tools/caffe train --solver=models/bvlc_reference_caffenet/solver.prototxt. 

However, for your reference, without a GPU, it would be slow. For example, on my MacBook Pro 

with an Intel i7 quad-core processor, it took ~4 minutes per 20 iterations, which is roughly 10x 

slower than on a K40 GPU. Listing C.18 shows a partial output of running this example on my 

machine. It is seen that at the end of the 50,000 iterations, training loss and test loss reached 

1.4091 and 8.42039, respectively, while the test accuracy reached 0.10892 only, after running for 

8684 minutes or about 6 days. This means that we do need GPUs for training deep learning 

models. 

If you decide to develop your skills in applying CNN models to computer vision, delve into the internal 

implementations of Caffe or Caffe2. Your investment in your time will be paid off nicely. 

Listing C.16 ImageNet AlexNet model definition file (train_val.prototxt, partial) 

name: "CaffeNet" 

layer { 

  name: "data" 

  type: "Data" 

  top: "data" 

  top: "label" 

  include { 

    phase: TRAIN 

  } 

  transform_param { 

    mirror: true 

    crop_size: 227 

    mean_file: 

"data/ilsvrc12/imagenet_mean.binarypro

to" 

  } 

# mean pixel / channel-wise mean 

instead of mean image 

#  transform_param { 

#    crop_size: 227 

#    mean_value: 104 

#    mean_value: 117 

#    mean_value: 123 

#    mirror: true 

#  } 

  data_param { 

    source: 

"examples/imagenet/ilsvrc12_train_lmdb

" 

    batch_size: 256 

    backend: LMDB 

  } 

} 

layer { 

  name: "data" 

  type: "Data" 

  top: "data" 

  top: "label" 

  include { 

    phase: TEST 

  } 

  transform_param { 

    mirror: false 

    crop_size: 227 

    mean_file: 

"data/ilsvrc12/imagenet_mean.binarypro

to" 

  } 

# mean pixel / channel-wise mean 

instead of mean image 
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#  transform_param { 

#    crop_size: 227 

#    mean_value: 104 

#    mean_value: 117 

#    mean_value: 123 

#    mirror: false 

#  } 

  data_param { 

    source: 

"examples/imagenet/ilsvrc12_val_lmdb" 

    batch_size: 50 

    backend: LMDB 

  } 

} 

layer { 

  name: "conv1" 

  type: "Convolution" 

  bottom: "data" 

  top: "conv1" 

  param { 

    lr_mult: 1 

    decay_mult: 1 

  } 

  param { 

    lr_mult: 2 

    decay_mult: 0 

  } 

  convolution_param { 

    num_output: 96 

    kernel_size: 11 

    stride: 4 

    weight_filler { 

      type: "gaussian" 

      std: 0.01 

    } 

    bias_filler { 

      type: "constant" 

      value: 0 

    } 

  } 

} 

layer { 

  name: "relu1" 

  type: "ReLU" 

  bottom: "conv1" 

  top: "conv1" 

} 

layer { 

  name: "pool1" 

  type: "Pooling" 

  bottom: "conv1" 

  top: "pool1" 

  pooling_param { 

    pool: MAX 

    kernel_size: 3 

    stride: 2 

  } 

} 

…… 

layer { 

  name: "accuracy" 

  type: "Accuracy" 

  bottom: "fc8" 

  bottom: "label" 

  top: "accuracy" 

  include { 

    phase: TEST 

  } 

} 

layer { 

  name: "loss" 

  type: "SoftmaxWithLoss" 

  bottom: "fc8" 

  bottom: "label" 

  top: "loss" 

} 

Listing C.17 The Caffe AlexNet job definition file solver.prototxt (note that I changed max_iter 

from 450000 to 50000 for my MacBook Pro with no GPU equipped) 

net: "models/bvlc_reference_caffenet/train_val.prototxt" 

test_iter: 1000 

test_interval: 1000 

base_lr: 0.01 

lr_policy: "step" 
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gamma: 0.1 

stepsize: 100000 

display: 20 

max_iter: 45000 

momentum: 0.9 

weight_decay: 0.0005 

snapshot: 10000 

snapshot_prefix: "models/bvlc_reference_caffenet/caffenet_train" 

solver_mode: CPU 

Listing C.18 Output of running the Caffe AlexNet job 

I0324 20:06:34.952026 2506531648 layer_factory.hpp:77] Creating layer data 
I0324 20:06:34.952397 2506531648 db_lmdb.cpp:35] Opened lmdb examples/imagenet/ilsvrc12_val_lmdb 
…… 
I0324 20:06:35.674441 2506531648 net.cpp:255] Network initialization done. 
I0324 20:06:35.674546 2506531648 solver.cpp:57] Solver scaffolding done. 
I0324 20:06:35.674772 2506531648 caffe.cpp:239] Starting Optimization 
I0324 20:06:35.674787 2506531648 solver.cpp:293] Solving CaffeNet 
I0324 20:06:35.674794 2506531648 solver.cpp:294] Learning Rate Policy: step 
I0324 20:06:35.785261 2506531648 solver.cpp:351] Iteration 0, Testing net (#0) 
I0324 20:23:23.643776 97710080 data_layer.cpp:73] Restarting data prefetching from start. 
I0324 20:23:27.673923 2506531648 solver.cpp:418]     Test net output #0: accuracy = 0.001 
I0324 20:23:27.673967 2506531648 solver.cpp:418]     Test net output #1: loss = 7.15056 (* 1 = 7.15056 loss) 
I0324 20:23:41.583783 2506531648 solver.cpp:239] Iteration 0 (0 iter/s, 1025.91s/20 iters), loss = 7.60255 
I0324 20:23:41.583819 2506531648 solver.cpp:258]     Train net output #0: loss = 7.60255 (* 1 = 7.60255 loss) 
I0324 20:23:41.583847 2506531648 sgd_solver.cpp:112] Iteration 0, lr = 0.01 
I0324 20:27:48.385308 2506531648 solver.cpp:239] Iteration 20 (0.0810369 iter/s, 246.801s/20 iters), loss = 
5.78311 
I0324 20:27:48.385622 2506531648 solver.cpp:258]     Train net output #0: loss = 5.78311 (* 1 = 5.78311 loss) 
I0324 20:27:48.385632 2506531648 sgd_solver.cpp:112] Iteration 20, lr = 0.01 
I0324 20:31:46.621083 2506531648 solver.cpp:239] Iteration 40 (0.0839507 iter/s, 238.235s/20 iters), loss = 
5.56459 
…… 
I0324 22:53:46.022282 2506531648 solver.cpp:258]     Train net output #0: loss = 4.17744 (* 1 = 4.17744 loss) 
I0324 22:53:46.022291 2506531648 sgd_solver.cpp:112] Iteration 740, lr = 0.01 
I0324 22:57:44.885599 2506531648 solver.cpp:239] Iteration 760 (0.08373 iter/s, 238.863s/20 iters), loss = 
4.13973 
I0324 22:57:44.885979 2506531648 solver.cpp:258]     Train net output #0: loss = 4.13973 (* 1 = 4.13973 loss) 
I0324 22:57:44.885989 2506531648 sgd_solver.cpp:112] Iteration 760, lr = 0.01 
…… 
I0330 20:31:20.443524 2506531648 solver.cpp:239] Iteration 49960 (0.101471 iter/s, 197.1s/20 iters), loss = 
1.25496 
I0330 20:31:20.445861 2506531648 solver.cpp:258]     Train net output #0: loss = 1.25496 (* 1 = 1.25496 loss) 
I0330 20:31:20.445873 2506531648 sgd_solver.cpp:112] Iteration 49960, lr = 0.01 
I0330 20:34:37.205741 2506531648 solver.cpp:239] Iteration 49980 (0.101647 iter/s, 196.759s/20 iters), loss = 
1.4091 
I0330 20:34:37.206394 2506531648 solver.cpp:258]     Train net output #0: loss = 1.4091 (* 1 = 1.4091 loss) 
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I0330 20:34:37.206403 2506531648 sgd_solver.cpp:112] Iteration 49980, lr = 0.01 
I0330 20:37:44.142716 2506531648 solver.cpp:468] Snapshotting to binary proto file 
models/bvlc_reference_caffenet/caffenet_train_iter_50000.caffemodel 
I0330 20:37:45.423261 2506531648 sgd_solver.cpp:280] Snapshotting solver state to binary proto file 
models/bvlc_reference_caffenet/caffenet_train_iter_50000.solverstate 
I0330 20:37:50.101991 2506531648 solver.cpp:331] Iteration 50000, loss = 1.15807 
I0330 20:37:50.102022 2506531648 solver.cpp:351] Iteration 50000, Testing net (#0) 
I0330 20:51:07.974370 97710080 data_layer.cpp:73] Restarting data prefetching from start. 
I0330 20:51:11.204300 2506531648 solver.cpp:418]     Test net output #0: accuracy = 0.10892 
I0330 20:51:11.204347 2506531648 solver.cpp:418]     Test net output #1: loss = 8.42039 (* 1 = 8.42039 loss) 
I0330 20:51:11.204352 2506531648 solver.cpp:336] Optimization Done. 
I0330 20:51:11.207332 2506531648 caffe.cpp:250] Optimization Done. 
 
real 8684m38.099s 
user 28888m26.225s 
sys 416m16.676s 

C.2 THE YOLOV3 FRAMEWORK  

In this section, we focus on the YOLOv3 framework. This is my favorite, as it is written in C, highly-

performing, and most of all, it offers many ways to build and run it, which is ideal for individual 

machine learning researchers. 

Once again, since it is written in C, I‟ll show you how to build it from the source next to get started. 

C.2.1 BUILDING THE YOLOV3 FRAMEWORK FROM THE SOURCE 

You may want to watch the YouTube video at https://www.youtube.com/watch?v=Cgxsv1riJhI about 

how amazing YOLOv3 is. This perhaps can motivate you a bit on getting deep with the YOLOv3 

framework. If so, let‟s begin with how to build YOLOv3 from the source next. You can check out 

YOLOv3 at https://pjreddie.com/darknet/yolo/ for more information about this framework now or later. 

YOLOv3 runs on an engine named darknet. The link at https://pjreddie.com/darknet/install/ gives 

information on how to install darknet. In the section of Compiling with OpenCV, it mentions that by 

default, darknet uses stb_image.h for image loading, but stb_image does not support all image formats. 

Besides, OpenCV is a production-quality computer vision library, so I was interested in re-compiling 

darknet with OpenCV. However, when I followed the simple instructions given there for re-compiling 

darknet with OpenCV on my MacBook Pro, it did not work! It took me some substantial amount of time 

to rebuild YOLOv3 from the source on my macOS, which motivated me to summarize my experience 

here so that you don‟t have to go through all the difficulties I once had. 

The steps to recompile darknet with OpenCV3 include: 

1. Installing XCode 

2. Installing Homebrew 

3. Installing Python 3 

4. Installing OpenCV 3 with Python bindings 

5. Recompiling darknet with OpenCV3 

https://www.youtube.com/watch?v=Cgxsv1riJhI
https://pjreddie.com/darknet/yolo/
https://pjreddie.com/darknet/install/
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If you already have 1-3 on your MacBook, you can skip to step 4. Otherwise, install 1-3 first, as 

instructed below. 

C.2.1.1 INSTALLING XCODE 

Get the latest version of XCode from the App Store and install it on your macOS machine. Then apply 

the developer license by executing the below command: 

$sudo xcodebuild -license 

Install the Command Line Tools by executing the below command: 

$ sudo xcode-select --install 

C.2.1.2 INSTALLING HOMEBREW 

If you do not have Homebrew installed on your macOS machine, install it by executing the below 

command (all in one line): 

$ ruby -e "$(curl -fsSL 

https://raw.githubusercontent.com/Homebrew/install/master/install)" 

C.2.1.3 INSTALLING PYTHON3 

If you do not have Python 3 installed on your macOS machine, install it with the below command: 

$ brew install python3 

To check the python version, execute the following command: 

$python3 --version 

I have Python 3.6.5 installed on my machine. 

You can build YOLOv3 with STB (https://github.com/nothings/stb) just for simple tasks such as loading 

and saving images, but OpenCV gives you additional capability for displaying images. Performance-

wise, they are about the same, but I like to install OpenCV on my MacBook to run YOLOv3 with that 

extra capability for displaying images. However, if you plan to upload your YOLOv3 bundle (binary + 

data) to a particular hosted env with no OpenCV support, then, building YOLOv3 with STB is the only 

option by setting OPENCV = 0 in the Makefile that comes with the YOLOv3 download. 

Next, I share with you how I installed OpenCV 3 on my MacBook, just in case you are interested as 

well. 

C.2.1.4 INSTALLING OPENCV 3 WITH PYTHON BINDINGS 

This is where you may run into difficulties. First of all, if you run the following command as instructed 

by many online blogs: 

$brew tap homebrew/science 

you may get the following: 

https://github.com/nothings/stb
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$Error: homebrew/science was deprecated. This tap is now empty as all its 

formulae were migrated. 

So what do you do? Just ignore it. 

Next, if you install opencv3 as follows: 

$brew install opencv3 

you will get the latest OpenCV 3.4.1_2 installed. Then, when you change to the darknet directory and re-

compile darknet by typing make, you will get the following error: 

$In file included from ./src/gemm.c:2: 
In file included from src/utils.h:5: 
In file included from include/darknet.h:25: 
In file included from /usr/local/Cellar/opencv/3.4.1_2/include/opencv2/highgui/highgui_c.h:45: 
In file included from /usr/local/Cellar/opencv/3.4.1_2/include/opencv2/core/core_c.h:48:1_2  
In file included from /usr/local/Cellar/opencv/3.4.1_2/include/opencv2/core/types_c.h:59: 
/usr/local/Cellar/opencv/3.4.1_2/include/opencv2/core/cvdef.h:485:1: fatal error: unknown type name 
'namespace' 
namespace cv { 
^ 
1 error generated. 
make: *** [obj/gemm.o] Error 1 

So what‟s wrong here? It only turned out that opencv3.4.1 does not work with YOLOv3. We have to fall 

back to opencv3.4.0. I got YOLOv3 compiled successfully with opencv3.4.0 by following the below 

procedure: 

1. Install prerequisites for opencv by executing the following commands: 

$ brew install cmake pkg-config 

$ brew install jpeg libpng libtiff openexr 

$ brew install eigen tbb 

2. Download opencv 3.4.0 and  opencv_contrib 3.4.0 to a directory: 

OpenCV3.4.0: https://github.com/opencv/opencv/releases/tag/3.4.0. Click on Source  code 

(tar.gz). 

OpenCV3.4.0 contrib: https://github.com/opencv/opencv_contrib/releases/tag/3.4.0.  

3. Change to your opencv-3.4.0 directory and execute the following three commands: 

$mkdir build 

$cd build 

$cmake -D CMAKE_BUILD_TYPE=RELEASE -D CMAKE_INSTALL_PREFIX=/usr/local -D 

OPENCV_EXTRA_MODULES_PATH=/Users/henryliu/mspc/devs/opencv_contrib-

3.4.0/modules -D 

PYTHON3_LIBRARY=/usr/local/Cellar/python3/3.6.5/Frameworks/Python.framew

ork/Versions/3.6/lib/python3.6/config-3.6m/libpython3.6.dylib -D 

PYTHON3_INCLUDE_DIR=/usr/local/Cellar/python3/3.6.5/Frameworks/Python.fr

amework/Versions/3.6/include/python3.6m/ -D BUILD_opencv_python2=OFF -D 

BUILD_opencv_python3=ON -D INSTALL_PYTHON_EXAMPLES=ON -D 

INSTALL_C_EXAMPLES=OFF -D BUILD_EXAMPLES=ON .. 

https://github.com/opencv/opencv/releases/tag/3.4.0
https://github.com/opencv/opencv_contrib/releases/tag/3.4.0
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Note that with the above cmake command, make sure you set OPENCV_EXTRA_MODULES_PATH, 

PYTHON3_LIBRARY and PYTHON3_INCLUDE_DIR to your own corresponding paths, respectively. At the 

end, you should see something similar to the following as I got on my machine: 

-- Configuring done 
-- Generating done 
-- Build files have been written to: /Users/henryliu/mspc/devs/opencv-3.4.0/build 

Next, execute the following two commands: 

$ sudo make -j4 
$ sudo make install 

To verify that you have installed opencv3.4.0 successfully, start up python3 and issue the import cv2 

statement as shown below and you should get „3.4.0‟ as I got on my machine: 

 henryliu:build henryliu$ python3 
Python 3.6.5 (default, Mar 30 2018, 06:42:10)  
[GCC 4.2.1 Compatible Apple LLVM 9.0.0 (clang-900.0.39.2)] on darwin 
Type "help", "copyright", "credits" or "license" for more information. 
>>> import cv2 
>>> cv2.__version__ 
'3.4.0' 
>>> 

C.2.1.5 BUILD YOLOV3 

Now download the latest YOLOv3 source code from https://github.com/pjreddie/darknet and save it to a 

directory on your machine. Then, change to the darknet directory, edit the Makefile file to enable 

OPENCV by setting 

OPENCV=1 

Now type make and it should start re-compiling YOLOv3. After completion, execute the following 

command: 

$ ./darknet imtest data/eagle.jpg 

You should see images as shown below. This is an indication that you have successfully recompiled 

YOLOv3 on your macOS machine, as these images are supposed to be loaded by OpenCV. 

 

Figure C.3 Testing YOLOv3 recompiled with OpenCV3.4.0. 

https://github.com/pjreddie/darknet
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C.2.2 ALEX’S CIFAR-10 WITH YOLOV3 

If you did not skip §C.1.3, you should already know Alex‟s work with CIFAR-10. Now. Let‟s follow 

https://pjreddie.com/darknet/train-cifar/ to train a CNN model with YOLOv3 using the CIFAR-10 

dataset. The steps include: 

1. Getting the CIFAR dataset 

2. Making a data file to define the job 

3. Making a network config file to define the net 

4. Training the model 

Let‟s follow these steps to train a classifier. 

C.2.2.1 GETTING THE CIFAR DATASET 

To get the CIFAR dataset, change to the darknet directory and run the following commands: 

$cd data 
$wget https://pjreddie.com/media/files/cifar.tgz 
$tar xzf cifar.tgz 

After the above step, you should have the directories of train and test as well as a file named labels.txt. 

You can check them out by executing the following commands: 

henryliu:cifar henryliu$ ls train | head -5 
0_frog.png 
10000_automobile.png 
10001_frog.png 
10002_frog.png 
10003_ship.png 
henryliu:cifar henryliu$ ls train | wc -l 
   50000 
henryliu:cifar henryliu$ ls test | wc -l 
   10000 
henryliu:cifar henryliu$ cat labels.txt  
airplane 
automobile 
bird 
cat 
deer 
dog 
frog 
horse 
ship 
truck 

The train directory contains 50k image files in PNG format, while the test directory contains 10k images 

for testing. The labels.txt file contains the 10 classes as shown above that those images belong to.  

Next, execute the following commands in the cifar directory to create the path files for the training and 

testing datasets, respectively: 

https://pjreddie.com/darknet/train-cifar/


354                        MACHINE LEARNING: A QUANTITATIVE APPROACH

 

   

$find `pwd`/train -name \*.png > train.list 
$find `pwd`/test -name \*.png > test.list 
henryliu:data henryliu$ head -5 cifar/train.list 
/Users/henryliu/mspc/devs/ws_cpp/darknet/data/cifar/train/0_frog.png 
/Users/henryliu/mspc/devs/ws_cpp/darknet/data/cifar/train/10000_automobile.png 
/Users/henryliu/mspc/devs/ws_cpp/darknet/data/cifar/train/10001_frog.png 
/Users/henryliu/mspc/devs/ws_cpp/darknet/data/cifar/train/10002_frog.png 
/Users/henryliu/mspc/devs/ws_cpp/darknet/data/cifar/train/10003_ship.png 
henryliu:data henryliu$ head -5 cifar/test.list 
/Users/henryliu/mspc/devs/ws_cpp/darknet/data/cifar/test/0_cat.png 
/Users/henryliu/mspc/devs/ws_cpp/darknet/data/cifar/test/1000_dog.png 
/Users/henryliu/mspc/devs/ws_cpp/darknet/data/cifar/test/1001_airplane.png 
/Users/henryliu/mspc/devs/ws_cpp/darknet/data/cifar/test/1002_ship.png 
/Users/henryliu/mspc/devs/ws_cpp/darknet/data/cifar/test/1003_deer.png 

 

Note: If you need to run the CIFAR job somewhere else, use the relative path in place of the absolute 

path for each image file by removing the part preceding data/cifar…, e.g., 

data/cifar/test/1003_deer.png, etc., in the train.list and test.list files. Otherwise, you will 

get “file not found” errors. 

 

Next, create the job definition file. 

C.2.2.2 MAKING A DATA FILE TO DEFINE THE JOB 

Now, check out or create a cifar.data file in the darknet/cfg directory with the following contents: 

classes=10 
train  = data/cifar/train.list 
valid  = data/cifar/test.list 
labels = data/cifar/labels.txt 
backup = backup 
top=2 

Since the backup directory does not exist yet, you need to create it yourself now. Then, familiarize 

yourself with the meaning of each line as follows: 

▪ classes=10: the number of unique classes that all images belong to 

▪ train: The file that contains the absolute path of each training image file, including the file name 

▪ valid: The file that contains the absolute path of each validation/test image file, including the file 

name 

▪ labels: The file containing a list of all possible classes by name 

▪ backup:  The directory for saving backup weights during training 

▪ top = 2: # of top-n classes to classify at test time (in addition to top-1) 

Next, define the network configuration for training the model. 

C.2.2.3 MAKING A NETWORK CONFIG FILE TO DEFINE THE NET 
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To define the model for training, the file cfg/cifar_small.cfg is composed with the following contents: 

[net] 
batch=128 
subdivisions=1 
height=28 
width=28 
channels=3 
max_crop=32 
min_crop=32 
 
hue=.1 
saturation=.75 
exposure=.75 
 
learning_rate=0.1 
policy=poly 
power=4 
max_batches = 5000 
momentum=0.9 
decay=0.0005 
 
[convolutional] 
batch_normalize=1 
filters=32 
size=3 
stride=1 
pad=1 
activation=leaky 
 
[maxpool] 
size=2 
stride=2 
 
[convolutional] 

batch_normalize=1 
filters=64 
size=3 
stride=1 
pad=1 
activation=leaky 
 
[maxpool] 
size=2 
stride=2 
 
[convolutional] 
batch_normalize=1 
filters=128 
size=3 
stride=1 
pad=1 
activation=leaky 
 
[convolutional] 
filters=10 
size=1 
stride=1 
pad=1 
activation=leaky 
 
[avgpool] 
 
[softmax] 
groups=1 
 
[cost] 
type=sse 

 

Note that YOLO uses the max_batches to define the # of maximum iterations. You can change it to a 

smaller number, say, 500, just to make sure that it runs. The other parameters should be obvious, given 

what you have learnt from the main text. The link at https://pjreddie.com/darknet/train-cifar/ has a brief 

description about the model. 

Next, let‟s see how we can train this model with YOLOv3. 

C.2.2.4 TRAINING THE MODEL 

To train the model, just launch it with the following command: 

$./darknet classifier train cfg/cifar.data cfg/cifar_small.cfg 

https://pjreddie.com/darknet/train-cifar/
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The command to restart the training with a backup file located in the backup directory is: 

./darknet classifier train cfg/cifar.data cfg/cifar_small.cfg backup/cifar_small.backup 

The instructions at https://pjreddie.com/darknet/train-cifar/ stopped here, so I would take over and share 

with you what I got on my macOS machine. 

I first set max_batches to 512 and ended up with the following output, which took about six minutes: 

henryliu:darknet henryliu$ ./darknet classifier train cfg/cifar.data cfg/cifar_small.cfg 
cifar_small 
1 
layer     filters    size              input                output 
    0 conv     32  3 x 3 / 1    28 x  28 x   3   ->    28 x  28 x  32  0.001 BFLOPs 
    1 max          2 x 2 / 2    28 x  28 x  32   ->    14 x  14 x  32 
    2 conv     64  3 x 3 / 1    14 x  14 x  32   ->    14 x  14 x  64  0.007 BFLOPs 
    3 max          2 x 2 / 2    14 x  14 x  64   ->     7 x   7 x  64 
    4 conv    128  3 x 3 / 1     7 x   7 x  64   ->     7 x   7 x 128  0.007 BFLOPs 
    5 conv     10  1 x 1 / 1     7 x   7 x 128   ->     7 x   7 x  10  0.000 BFLOPs 
    6 avg                        7 x   7 x  10   ->    10 
    7 softmax                                          10 
    8 cost                                             10 
Learning Rate: 0.1, Momentum: 0.9, Decay: 0.0005 
50000 
32 32 
1, 0.003: 1.628222, 1.628222 avg, 0.099221 rate, 0.789039 seconds, 128 images, 08-28-2018 19:52:09.000  
2, 0.005: 1.607311, 1.626131 avg, 0.098447 rate, 0.692393 seconds, 256 images, 08-28-2018 19:52:09.000  
3, 0.008: 1.580675, 1.621585 avg, 0.097677 rate, 0.790754 seconds, 384 images, 08-28-2018 19:52:10.000  
… 
 
510, 1.306: 0.966246, 1.016550 avg, 0.000000 rate, 0.732217 seconds, 65280 images, 08-28-2018 19:58:28.000  
511, 1.308: 1.038416, 1.018736 avg, 0.000000 rate, 0.762059 seconds, 65408 images, 08-28-2018 19:58:28.000  
512, 1.311: 0.986644, 1.015527 avg, 0.000000 rate, 0.711117 seconds, 65536 images, 08-28-2018 19:58:29.000  
Saving weights to backup/cifar_small.weights  

 

The last line of 512, 1.311: 0.986644, 1.015527 avg, 0.000000 rate, 0.711117 seconds, 65536 images, 08-28-

2018 19:58:29.000 represents the iteration, total loss: current loss, average loss so far, current learning 

rate, time taken for this iteration, the number of images processed so far and timestamp that was added 

by me in the source code. Notice the following: 

▪ The learning rate started with 0.099221 at iteration 1 and ended up with 0.000000 at iteration 512.  

▪ The number of images started with 128 at iteration 1 and ended up with 65536 at iteration 512. This 

is because each iteration uses 128 images, so 128512 = 65536. This also means that after 50000/128 

= 390 iterations, each image would have been used at least once. 

▪ The avg loss started with 1.628222 and ended with 1.015527 after 512 iterations over a duration of 

6m20s. Besides, each iteration took about 0.7 seconds, or 128 images/0.7s = 183 images per second, 

which may look great, but actually not, as this is a fairly simple and small example. 

https://pjreddie.com/darknet/train-cifar/
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As you may have realized, this is an image classification ML example, which means that a single-object 

is given to the model, which predicts what the image might be. Next, I‟ll show you how good this simple 

model is by giving it an image from the YOLOv3 download as shown in Figure C.4. 

 

Figure C.4 A picture containing multiple objects. 

Here is what the model predicted when the following command was executed on my MacBook: 

henryliu:cifar henryliu$ ./darknet_mac_no_accel classifier predict cfg/cifar.data cfg/cifar_small.cfg 
backup/cifar_small_512.weights data/dog.jpg 
…… 
Loading weights from backup/cifar_small_512.weights...Done! 
data/dog.jpg: Predicted in 0.003164 seconds. 
17.42%: automobile 
16.94%: frog 

The model trained predicted that this picture might be an automobile with a probability of 17.42% or a 

frog with a probability of 16.94%. Neither is true, though. However, partially it‟s my fault that I gave a 

multi-object image to a single-image classification model to predict what the object was. To be fair, I 

made the following three pictures with one object per picture and fed them to the model one by one and 

see what the model would predict. 

       

Figure C.5 Three separate images with one object per picture. 

And these were what the model predicted now: 
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 henryliu:cifar henryliu$ ./darknet_mac_no_accel classifier predict cfg/cifar.data cfg/cifar_small.cfg 
backup/cifar_small_512.weights data/dog-1.png 
….. 
data/dog-1.png: Predicted in 0.002243 seconds. 
33.32%: dog 
23.08%: cat 
henryliu:cifar henryliu$ ./darknet_mac_no_accel classifier predict cfg/cifar.data cfg/cifar_small.cfg 
backup/cifar_small_512.weights data/horse-1.png 
…… 
data/horse-1.png: Predicted in 0.002402 seconds. 
36.22%: airplane 
21.94%: automobile 
henryliu:cifar henryliu$ ./darknet_mac_no_accel classifier predict cfg/cifar.data cfg/cifar_small.cfg 
backup/cifar_small_512.weights data/car-1.png 
…… 
data/car-1.png: Predicted in 0.002592 seconds. 
42.72%: automobile 
33.49%: airplane 

Namely, the model predicted that the dog was 33.32% likely to be a dog and 23.08% likely to be a cat, 

the horse was 36.22% likely to be an airplane and 21.94% likely to be an automobile, and the car was 

42.72% likely to be an automobile and 33.49% likely to be an airplane. The model was not sufficiently 

accurate, but still not too bad, given that it was trained for about 6 minutes only. 

Next I changed max_batches from 512 back to 5000 and got the loss down from 1.01 to ~0.58 after ~63 

minutes. I ran the same tests and got: 

henryliu:cifar henryliu$ ./darknet_mac_accel classifier predict cfg/cifar.data cfg/cifar_small.cfg 
backup/cifar_small_5000.weights data/dog.jpg 
…… 
data/dog.jpg: Predicted in 0.002281 seconds. 
81.79%: ship 
10.94%: airplane 
henryliu:cifar henryliu$ ./darknet_mac_accel classifier predict cfg/cifar.data cfg/cifar_small.cfg 
backup/cifar_small_5000.weights data/dog-1.png 
…… 
data/dog-1.png: Predicted in 0.001843 seconds. 
53.68%: horse 
24.24%: cat 
henryliu:cifar henryliu$ ./darknet_mac_accel classifier predict cfg/cifar.data cfg/cifar_small.cfg 
backup/cifar_small_5000.weights data/horse-1.png 
…… 
data/horse-1.png: Predicted in 0.002292 seconds. 
71.48%: horse 
28.38%: airplane 
henryliu:cifar henryliu$ ./darknet_mac_accel classifier predict cfg/cifar.data cfg/cifar_small.cfg 
backup/cifar_small_5000.weights data/car-1.png 
…… 
data/car-1.png: Predicted in 0.002093 seconds. 
67.99%: automobile 
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15.19%: ship 

Finally I changed max_batches from 5000 to 105000 and got the loss down from ~0.58 to ~0.24, using a 

version of YOLOv3 I optimized on my MacBook, which is about 3x faster for this particular small 

CIFAR-10 model. I‟ll share the details of the optimization later so that you can run a much larger dataset 

named COCO on your Mac machine by roughly 20x faster as I did. But for now, here are the same tests 

and the results with this much better trained model: 

henryliu:cifar henryliu$ ./darknet_mac_accel classifier predict cfg/cifar.data cfg/cifar_small.cfg 
backup/cifar_small_105000.weights data/dog.jpg 
…… 
data/dog.jpg: Predicted in 0.002316 seconds. 
79.54%: airplane 
16.67%: cat 
henryliu:cifar henryliu$ ./darknet_mac_accel classifier predict cfg/cifar.data cfg/cifar_small.cfg 
backup/cifar_small_105000.weights data/dog-1.png 
…… 
data/dog-1.png: Predicted in 0.002554 seconds. 
99.91%: dog 
 0.05%: horse 
henryliu:cifar henryliu$ ./darknet_mac_accel classifier predict cfg/cifar.data cfg/cifar_small.cfg 
backup/cifar_small_105000.weights data/horse-1.png 
…… 
data/horse-1.png: Predicted in 0.002598 seconds. 
74.49%: horse 
14.32%: airplane 
henryliu:cifar henryliu$ ./darknet_mac_accel classifier predict cfg/cifar.data cfg/cifar_small.cfg 
backup/cifar_small_105000.weights data/car-1.png 
data/car-1.png: Predicted in 0.002157 seconds. 
95.72%: automobile 
 2.68%: truck 

Now, except the first “all-in-one” picture test, all single-object pictures have been predicted correctly, 

with a dog being 99.91% a dog, a horse 74.49% a horse, and a car 95.72% an automobile, respectively. 

In fact, I made another run with 205000 max-batches and the loss was reduced from 0.24 to 0.20 only, 

which would not help much further. 

Finally, I tried to test/validate the model trained above using the validation/test dataset, and got the 

results as shown in Listing C.19. Since the CIFAR data falls into the 10 classes of airplane – 0, 

automobile – 1, bird – 2, cat – 3, deer – 4, dog – 5, frog – 6, horse – 7, ship – 8, and truck 9, for a given 

test image, the model attempts to predict the probabilities of being in the top 2 classes of airplane – 0 

and automobile – 1. For example, the line of data/cifar/test/1001_airplane.png, 0, 0.959015, 0.002087 

means that the airplane picture is 95.9% an airplane and 0.2087% an automobile, and so forth. Overall, 

this model trained with 105000 batches seems to be very accurate. 

Next we explore YOLO‟s another use for detecting multiple objects in an image or bounding boxes. 

Listing C.19 Validation runs with the CIFAR small configuration model trained with 105000 

iterations 
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henryliu:cifar henryliu$ ./darknet_mac_accel classifier valid cfg/cifar.data cfg/cifar_small.cfg 
backup/cifar_small_105000.weights 
layer     filters    size              input                output 
    0 conv     32  3 x 3 / 1    28 x  28 x   3   ->    28 x  28 x  32  0.001 BFLOPs 
    1 max          2 x 2 / 2    28 x  28 x  32   ->    14 x  14 x  32 
    2 conv     64  3 x 3 / 1    14 x  14 x  32   ->    14 x  14 x  64  0.007 BFLOPs 
    3 max          2 x 2 / 2    14 x  14 x  64   ->     7 x   7 x  64 
    4 conv    128  3 x 3 / 1     7 x   7 x  64   ->     7 x   7 x 128  0.007 BFLOPs 
    5 conv     10  1 x 1 / 1     7 x   7 x 128   ->     7 x   7 x  10  0.000 BFLOPs 
    6 avg                        7 x   7 x  10   ->    10 
    7 softmax                                          10 
    8 cost                                             10 
Loading weights from backup/cifar_small_105000.weights...Done! 
data/cifar/test/0_cat.png, 3, 0.002164, 0.003230,  
0: top 1: 1.000000, top 2: 1.000000 
data/cifar/test/1000_dog.png, 5, 0.000000, 0.000000,  
1: top 1: 1.000000, top 2: 1.000000 
data/cifar/test/1001_airplane.png, 0, 0.959015, 0.002087,  
2: top 1: 1.000000, top 2: 1.000000 
data/cifar/test/1002_ship.png, 8, 0.007687, 0.162669,  
3: top 1: 1.000000, top 2: 1.000000 
data/cifar/test/1003_deer.png, 4, 0.000001, 0.000000,  
4: top 1: 1.000000, top 2: 1.000000 
data/cifar/test/1004_ship.png, 8, 0.010149, 0.000043,  
5: top 1: 1.000000, top 2: 1.000000 
data/cifar/test/1005_automobile.png, 1, 0.000031, 0.922122,  
6: top 1: 1.000000, top 2: 1.000000 
data/cifar/test/1006_automobile.png, 1, 0.000000, 0.999992,  
7: top 1: 1.000000, top 2: 1.000000 
data/cifar/test/1007_ship.png, 8, 0.066883, 0.002106,  
8: top 1: 1.000000, top 2: 1.000000 
data/cifar/test/1008_truck.png, 9, 0.236106, 0.022653,  
9: top 1: 0.900000, top 2: 0.900000 
data/cifar/test/1009_frog.png, 6, 0.000022, 0.000192,  
10: top 1: 0.909091, top 2: 0.909091 
data/cifar/test/100_deer.png, 4, 0.000003, 0.000001,  
11: top 1: 0.916667, top 2: 0.916667 
data/cifar/test/1010_airplane.png, 0, 0.999245, 0.000001,  
12: top 1: 0.923077, top 2: 0.923077 
…… 

C.2.3 USE YOLOV3 TO DETECT MULTI-OBJECTS IN AN IMAGE OR BOUNDING BOXES 

From YOLO‟s main web page at https://pjreddie.com/darknet/yolo/, you can find a section about 

detecting bounding boxes using YOLO‟s pre-trained model. It starts with getting darknet, but you 

already have it if you followed the previous instructions and re-compiled YOLOv3 with OpenCV3. 

Then, you can directly go to the next step of retrieving the pre-trained YOLO weights as follows: 

$ wget https://pjreddie.com/media/files/yolov3.weights 

https://pjreddie.com/darknet/yolo/
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Then, execute the following command to detect objects in the picture: 

$ ./darknet detect cfg/yolov3.cfg yolov3.weights data/dog.jpg 

The output from the above command should look similar to the following (the list is a bit lengthy, but it 

gives all details layer by layer about how this model is composed exactly): 

henryliu:darknet henryliu$ ./darknet detect cfg/yolov3.cfg yolov3.weights data/dog.jpg 
layer     filters    size              input                output 
    0 conv     32  3 x 3 / 1   416 x 416 x   3   ->   416 x 416 x  32  0.299 BFLOPs 
    1 conv     64  3 x 3 / 2   416 x 416 x  32   ->   208 x 208 x  64  1.595 BFLOPs 
    2 conv     32  1 x 1 / 1   208 x 208 x  64   ->   208 x 208 x  32  0.177 BFLOPs 
    3 conv     64  3 x 3 / 1   208 x 208 x  32   ->   208 x 208 x  64  1.595 BFLOPs 
    4 res    1                 208 x 208 x  64   ->   208 x 208 x  64 
    5 conv    128  3 x 3 / 2   208 x 208 x  64   ->   104 x 104 x 128  1.595 BFLOPs 
    6 conv     64  1 x 1 / 1   104 x 104 x 128   ->   104 x 104 x  64  0.177 BFLOPs 
    7 conv    128  3 x 3 / 1   104 x 104 x  64   ->   104 x 104 x 128  1.595 BFLOPs 
    8 res    5                 104 x 104 x 128   ->   104 x 104 x 128 
    9 conv     64  1 x 1 / 1   104 x 104 x 128   ->   104 x 104 x  64  0.177 BFLOPs 
   10 conv    128  3 x 3 / 1   104 x 104 x  64   ->   104 x 104 x 128  1.595 BFLOPs 
   11 res    8                 104 x 104 x 128   ->   104 x 104 x 128 
   12 conv    256  3 x 3 / 2   104 x 104 x 128   ->    52 x  52 x 256  1.595 BFLOPs 
   13 conv    128  1 x 1 / 1    52 x  52 x 256   ->    52 x  52 x 128  0.177 BFLOPs 
   14 conv    256  3 x 3 / 1    52 x  52 x 128   ->    52 x  52 x 256  1.595 BFLOPs 
   15 res   12                  52 x  52 x 256   ->    52 x  52 x 256 
   16 conv    128  1 x 1 / 1    52 x  52 x 256   ->    52 x  52 x 128  0.177 BFLOPs 
   17 conv    256  3 x 3 / 1    52 x  52 x 128   ->    52 x  52 x 256  1.595 BFLOPs 
   18 res   15                  52 x  52 x 256   ->    52 x  52 x 256 
   19 conv    128  1 x 1 / 1    52 x  52 x 256   ->    52 x  52 x 128  0.177 BFLOPs 
   20 conv    256  3 x 3 / 1    52 x  52 x 128   ->    52 x  52 x 256  1.595 BFLOPs 
   21 res   18                  52 x  52 x 256   ->    52 x  52 x 256 
   22 conv    128  1 x 1 / 1    52 x  52 x 256   ->    52 x  52 x 128  0.177 BFLOPs 
   23 conv    256  3 x 3 / 1    52 x  52 x 128   ->    52 x  52 x 256  1.595 BFLOPs 
   24 res   21                  52 x  52 x 256   ->    52 x  52 x 256 
   25 conv    128  1 x 1 / 1    52 x  52 x 256   ->    52 x  52 x 128  0.177 BFLOPs 
   26 conv    256  3 x 3 / 1    52 x  52 x 128   ->    52 x  52 x 256  1.595 BFLOPs 
   27 res   24                  52 x  52 x 256   ->    52 x  52 x 256 
   28 conv    128  1 x 1 / 1    52 x  52 x 256   ->    52 x  52 x 128  0.177 BFLOPs 
   29 conv    256  3 x 3 / 1    52 x  52 x 128   ->    52 x  52 x 256  1.595 BFLOPs 
   30 res   27                  52 x  52 x 256   ->    52 x  52 x 256 
   31 conv    128  1 x 1 / 1    52 x  52 x 256   ->    52 x  52 x 128  0.177 BFLOPs 
   32 conv    256  3 x 3 / 1    52 x  52 x 128   ->    52 x  52 x 256  1.595 BFLOPs 
   33 res   30                  52 x  52 x 256   ->    52 x  52 x 256 
   34 conv    128  1 x 1 / 1    52 x  52 x 256   ->    52 x  52 x 128  0.177 BFLOPs 
   35 conv    256  3 x 3 / 1    52 x  52 x 128   ->    52 x  52 x 256  1.595 BFLOPs 
   36 res   33                  52 x  52 x 256   ->    52 x  52 x 256 
   37 conv    512  3 x 3 / 2    52 x  52 x 256   ->    26 x  26 x 512  1.595 BFLOPs 
   38 conv    256  1 x 1 / 1    26 x  26 x 512   ->    26 x  26 x 256  0.177 BFLOPs 
   39 conv    512  3 x 3 / 1    26 x  26 x 256   ->    26 x  26 x 512  1.595 BFLOPs 
   40 res   37                  26 x  26 x 512   ->    26 x  26 x 512 
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   41 conv    256  1 x 1 / 1    26 x  26 x 512   ->    26 x  26 x 256  0.177 BFLOPs 
   42 conv    512  3 x 3 / 1    26 x  26 x 256   ->    26 x  26 x 512  1.595 BFLOPs 
   43 res   40                  26 x  26 x 512   ->    26 x  26 x 512 
   44 conv    256  1 x 1 / 1    26 x  26 x 512   ->    26 x  26 x 256  0.177 BFLOPs 
   45 conv    512  3 x 3 / 1    26 x  26 x 256   ->    26 x  26 x 512  1.595 BFLOPs 
   46 res   43                  26 x  26 x 512   ->    26 x  26 x 512 
   47 conv    256  1 x 1 / 1    26 x  26 x 512   ->    26 x  26 x 256  0.177 BFLOPs 
   48 conv    512  3 x 3 / 1    26 x  26 x 256   ->    26 x  26 x 512  1.595 BFLOPs 
   49 res   46                  26 x  26 x 512   ->    26 x  26 x 512 
   50 conv    256  1 x 1 / 1    26 x  26 x 512   ->    26 x  26 x 256  0.177 BFLOPs 
   51 conv    512  3 x 3 / 1    26 x  26 x 256   ->    26 x  26 x 512  1.595 BFLOPs 
   52 res   49                  26 x  26 x 512   ->    26 x  26 x 512 
   53 conv    256  1 x 1 / 1    26 x  26 x 512   ->    26 x  26 x 256  0.177 BFLOPs 
   54 conv    512  3 x 3 / 1    26 x  26 x 256   ->    26 x  26 x 512  1.595 BFLOPs 
   55 res   52                  26 x  26 x 512   ->    26 x  26 x 512 
   56 conv    256  1 x 1 / 1    26 x  26 x 512   ->    26 x  26 x 256  0.177 BFLOPs 
   57 conv    512  3 x 3 / 1    26 x  26 x 256   ->    26 x  26 x 512  1.595 BFLOPs 
   58 res   55                  26 x  26 x 512   ->    26 x  26 x 512 
   59 conv    256  1 x 1 / 1    26 x  26 x 512   ->    26 x  26 x 256  0.177 BFLOPs 
   60 conv    512  3 x 3 / 1    26 x  26 x 256   ->    26 x  26 x 512  1.595 BFLOPs 
   61 res   58                  26 x  26 x 512   ->    26 x  26 x 512 
   62 conv   1024  3 x 3 / 2    26 x  26 x 512   ->    13 x  13 x1024  1.595 BFLOPs 
   63 conv    512  1 x 1 / 1    13 x  13 x1024   ->    13 x  13 x 512  0.177 BFLOPs 
   64 conv   1024  3 x 3 / 1    13 x  13 x 512   ->    13 x  13 x1024  1.595 BFLOPs 
   65 res   62                  13 x  13 x1024   ->    13 x  13 x1024 
   66 conv    512  1 x 1 / 1    13 x  13 x1024   ->    13 x  13 x 512  0.177 BFLOPs 
   67 conv   1024  3 x 3 / 1    13 x  13 x 512   ->    13 x  13 x1024  1.595 BFLOPs 
   68 res   65                  13 x  13 x1024   ->    13 x  13 x1024 
   69 conv    512  1 x 1 / 1    13 x  13 x1024   ->    13 x  13 x 512  0.177 BFLOPs 
   70 conv   1024  3 x 3 / 1    13 x  13 x 512   ->    13 x  13 x1024  1.595 BFLOPs 
   71 res   68                  13 x  13 x1024   ->    13 x  13 x1024 
   72 conv    512  1 x 1 / 1    13 x  13 x1024   ->    13 x  13 x 512  0.177 BFLOPs 
   73 conv   1024  3 x 3 / 1    13 x  13 x 512   ->    13 x  13 x1024  1.595 BFLOPs 
   74 res   71                  13 x  13 x1024   ->    13 x  13 x1024 
   75 conv    512  1 x 1 / 1    13 x  13 x1024   ->    13 x  13 x 512  0.177 BFLOPs 
   76 conv   1024  3 x 3 / 1    13 x  13 x 512   ->    13 x  13 x1024  1.595 BFLOPs 
   77 conv    512  1 x 1 / 1    13 x  13 x1024   ->    13 x  13 x 512  0.177 BFLOPs 
   78 conv   1024  3 x 3 / 1    13 x  13 x 512   ->    13 x  13 x1024  1.595 BFLOPs 
   79 conv    512  1 x 1 / 1    13 x  13 x1024   ->    13 x  13 x 512  0.177 BFLOPs 
   80 conv   1024  3 x 3 / 1    13 x  13 x 512   ->    13 x  13 x1024  1.595 BFLOPs 
   81 conv    255  1 x 1 / 1    13 x  13 x1024   ->    13 x  13 x 255  0.088 BFLOPs 
   82 detection 
   83 route  79 
   84 conv    256  1 x 1 / 1    13 x  13 x 512   ->    13 x  13 x 256  0.044 BFLOPs 
   85 upsample            2x    13 x  13 x 256   ->    26 x  26 x 256 
   86 route  85 61 
   87 conv    256  1 x 1 / 1    26 x  26 x 768   ->    26 x  26 x 256  0.266 BFLOPs 
   88 conv    512  3 x 3 / 1    26 x  26 x 256   ->    26 x  26 x 512  1.595 BFLOPs 
   89 conv    256  1 x 1 / 1    26 x  26 x 512   ->    26 x  26 x 256  0.177 BFLOPs 
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   90 conv    512  3 x 3 / 1    26 x  26 x 256   ->    26 x  26 x 512  1.595 BFLOPs 
   91 conv    256  1 x 1 / 1    26 x  26 x 512   ->    26 x  26 x 256  0.177 BFLOPs 
   92 conv    512  3 x 3 / 1    26 x  26 x 256   ->    26 x  26 x 512  1.595 BFLOPs 
   93 conv    255  1 x 1 / 1    26 x  26 x 512   ->    26 x  26 x 255  0.177 BFLOPs 
   94 detection 
   95 route  91 
   96 conv    128  1 x 1 / 1    26 x  26 x 256   ->    26 x  26 x 128  0.044 BFLOPs 
   97 upsample            2x    26 x  26 x 128   ->    52 x  52 x 128 
   98 route  97 36 
   99 conv    128  1 x 1 / 1    52 x  52 x 384   ->    52 x  52 x 128  0.266 BFLOPs 
  100 conv    256  3 x 3 / 1    52 x  52 x 128   ->    52 x  52 x 256  1.595 BFLOPs 
  101 conv    128  1 x 1 / 1    52 x  52 x 256   ->    52 x  52 x 128  0.177 BFLOPs 
  102 conv    256  3 x 3 / 1    52 x  52 x 128   ->    52 x  52 x 256  1.595 BFLOPs 
  103 conv    128  1 x 1 / 1    52 x  52 x 256   ->    52 x  52 x 128  0.177 BFLOPs 
  104 conv    256  3 x 3 / 1    52 x  52 x 128   ->    52 x  52 x 256  1.595 BFLOPs 
  105 conv    255  1 x 1 / 1    52 x  52 x 256   ->    52 x  52 x 255  0.353 BFLOPs 
  106 detection 
Loading weights from yolov3.weights...Done! 
data/dog.jpg: Predicted in 7.581085 seconds. 
truck: 93% 
bicycle: 99% 
dog: 99% 

The above output indicates that it took 7.581 seconds and predicted a truck, a bicycle and a dog with the 

probabilities of 93%, 99% and 99%, respectively. If you open the projections.png file in the darknet 

directory, you should see those bounding boxes predicted as shown in Fig. C.6. You can also locate this 

image on the Dock by clicking on the Terminal icon labeled darknet as shown in Fig. C.6. 

 

Figure C.6 Bounding boxes predicted by YOLOv3 with its own pre-trained weights. 

Now you can press Ctrl-C to end the session. You can try another image, e.g., data/horses.jpg , and you 

would get the output as shown below, showing that four horses have been detected, as shown in Fig. C.7: 

data/horses.jpg: Predicted in 7.799737 seconds. 
horse: 98% 
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horse: 97% 
horse: 91% 
horse: 89% 

It is amazing that YOLO can easily tell what objects and how many are in a picture! 

 

Figure C.7 Four horses detected by YOLO with its own pre-trained weights. 

You can also try YOLO with live videos from a webcam as described there. I‟ll leave this to you, 

though. 

C.2.4 TRAINING YOLO ON THE COCO DATASET 

To train YOLO on the 2014 COCO dataset, check out this paper https://arxiv.org/pdf/1405.0312.pdf to 

learn a bit more about the COCO dataset first. Then, download the 2014 COCO dataset directly from 

COCO‟s download site at http://cocodataset.org/#download, which is much faster than from YOLO‟s 

website. After downloading 2014 COCO dataset zip files, create a data/coco/images sub-directory in the 

darknet directory, and place the 2014 COCO zip files there. Then, follow the instructions at YOLO‟s 

main page at https://pjreddie.com/darknet/yolo/ under the section titled Training YOLO on COCO, 

except that you need to execute the following command: 

$ cp scripts/get_coco_dataset.sh data 

Then, make some changes in the get_coco_dataset.sh file as shown in Listing C.19. The commands I 

executed next were: 

$ cd data 
$ bash get_coco_dataset.sh 

The get_coco_dataset.sh script, shown in Listing C.19, explains what this script does, as a good example 

for how to retrieve dataset and prepare the data. Note that downloading the COCO dataset may take 

many hours, depending on the Internet speed you have with your machine. In my case, downloading the 

https://arxiv.org/pdf/1405.0312.pdf
http://cocodataset.org/#download
https://pjreddie.com/darknet/yolo/
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train/val/test data concurrently took me about two hours at home with a download speed of up to 14 

MB/s with a direct Ethernet cable connection, as shown in Fig. C.8. 

Listing C.19 get_coco_dataset.sh (those marked red were modified) 

#!/bin/bash 
 
# Clone COCO API 
#git clone https://github.com/pdollar/coco 
cd coco 
 
#mkdir images 
#cd images 
 
# Download Images 
#wget -c https://pjreddie.com/media/files/train2014.zip 
#wget -c https://pjreddie.com/media/files/val2014.zip 
 
# Unzip 
#unzip -q train2014.zip 
#unzip -q val2014.zip 
#unzip -q test2014.zip 
 
#cd .. 
 
# Download COCO Metadata 
wget -c https://pjreddie.com/media/files/instances_train-val2014.zip 
wget -c https://pjreddie.com/media/files/coco/5k.part 
wget -c https://pjreddie.com/media/files/coco/trainvalno5k.part 
wget -c https://pjreddie.com/media/files/coco/labels.tgz 
tar xzf labels.tgz 
unzip -q instances_train-val2014.zip 
 
# Set Up Image Lists 
paste <(awk "{print \"$PWD\"}" <5k.part) 5k.part | tr -d '\t' > 5k.txt 
paste <(awk "{print \"$PWD\"}" <trainvalno5k.part) trainvalno5k.part | tr -d '\t' > trainvalno5k.txt 

 

 

Figure C.8 COCO dataset download speed at home, directly from COCO‟s download site. 

Once again, you should use relative path for each image file in the 5k.txt and trainvalno5k.txt files 

if you plan to copy and run COCO on a different environment. 

Then, I modified the cfg/coco.data file to have the following contents: 
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classes= 80 
train  = data/coco/trainvalno5k.txt 
valid = data/coco/5k.txt 
names = data/coco.names 
backup = backup 

The cfg/yolov3.cfg was modified for training as follows, as marked in red (max_batches was changed 

from 500200 to 5000 just to try it out for the first time): 

[net] 
# Testing 
#batch=1 
#subdivisions=1 
# Training 
batch=64 
subdivisions=16 
width=416 
height=416 
channels=3 
momentum=0.9 
decay=0.0005 
angle=0 
saturation = 1.5 
exposure = 1.5 
hue=.1 
 
learning_rate=0.001 
burn_in=1000 
#max_batches = 500200 
max_batches = 5000 
policy=steps 
steps=400000,450000 
scales=.1,.1 
 
[convolutional] 
batch_normalize=1 

filters=32 
size=3 
stride=1 
pad=1 
activation=leaky 
 
# Downsample 
 
[convolutional] 
batch_normalize=1 
filters=64 
size=3 
stride=2 
pad=1 
activation=leaky 
… 
[yolo] 
mask = 0,1,2 
anchors = 10,13,  16,30,  33,23,  30,61,  62,45,  
59,119,  116,90,  156,198,  373,326 
classes=80 
num=9 
jitter=.3 
ignore_thresh = .5 
truth_thresh = 1 
random=1

Now you need to download the pre-trained convolutional weights that have been pre-trained on Imagenet 

using the darknet53 model. You can just download the weights for the convolutional layers by executing 

the following command: 

$wget https://pjreddie.com/media/files/darknet53.conv.74 

Then I trained the model with COCO dataset by executing the following command: 

$./darknet detector train cfg/coco.data cfg/yolov3.cfg darknet53.conv.74 

The output you get should be similar to what I got as shown below: 

./darknet detector train cfg/coco.data cfg/yolov3.cfg darknet53.conv.74 
yolov3 
layer     filters    size              input                output 
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    0 conv     32  3 x 3 / 1   416 x 416 x   3   ->   416 x 416 x  32  0.299 BFLOPs 
    …… 
  105 conv    255  1 x 1 / 1    52 x  52 x 256   ->    52 x  52 x 255  0.353 BFLOPs 
  106 detection 
Loading weights from darknet53.conv.74...Done! 
Learning Rate: 0.001, Momentum: 0.9, Decay: 0.0005 
Resizing 
352 
Loaded: 0.142245 seconds 
Region 82 Avg IOU: 0.306305, Class: 0.459760, Obj: 0.475054, No Obj: 0.443880, .5R: 0.200000, .75R: 0.000000,  count: 10 
Region 94 Avg IOU: 0.191476, Class: 0.515562, Obj: 0.416233, No Obj: 0.460233, .5R: 0.000000, .75R: 0.000000,  count: 7 
…… 
Region 82 Avg IOU: 0.303231, Class: 0.362318, Obj: 0.471073, No Obj: 0.442284, .5R: 0.142857, .75R: 0.000000,  count: 7 
…… 
Region 106 Avg IOU: 0.260889, Class: 0.538027, Obj: 0.485092, No Obj: 0.472694, .5R: 0.133333, .75R: 0.000000,  count: 15 
…… 
1: 728.814819, 728.814819 avg, 0.000000 rate, 1017.449199 seconds, 64 images 
Loaded: 0.000042 seconds 
Region 82 Avg IOU: 0.157086, Class: 0.629885, Obj: 0.393714, No Obj: 0.445066, .5R: 0.000000, .75R: 0.000000,  count: 5 
…… 
Region 106 Avg IOU: 0.158112, Class: 0.301957, Obj: 0.455966, No Obj: 0.464749, .5R: 0.000000, .75R: 0.000000,  count: 4 
2: 716.763916, 727.609741 avg, 0.000000 rate, 1039.281667 seconds, 128 images 

…… 

So what does each output line shown above mean? I found that the above output is generated by line 239 

from function forward_yolo_layer in the yolo_layer.c file as shown below: 

printf("Region %d Avg IOU: %f, Class: %f, Obj: %f, No Obj: %f, .5R: %f, .75R: 

%f,  count: %d\n", net.index, avg_iou/count, avg_cat/class_count, 

avg_obj/count, avg_anyobj/(l.w*l.h*l.n*l.batch), recall/count, 

recall75/count, count); 

So what is IOU? It stands for Intersection over Union, which measures how well the ground-truth 

bounding box overlaps with the predicted bounding box, as shown in Figure C.9. If IOU = 1, it means 

that the ground-truth bounding box and the predicted bounding box overlap exactly.  

  

Figure C.9 IOU: Intersection over Union (Source: Courtesy of https://www.pyimagesearch.com/ ). 

The portion of the code from function forward_yolo_layer is listed in Listing C.20 below, which 

shows how quantities on each of the output lines starting with “Region …” are computed: 

https://www.pyimagesearch.com/
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Listing C.20 How a Region is computed with YOLOv3 

            int mask_n = int_index(l.mask, best_n, l.n); 
            if(mask_n >= 0){ 
                int box_index = entry_index(l, b, mask_n*l.w*l.h + j*l.w + i, 0); 
                float iou = delta_yolo_box(truth, l.output, l.biases, best_n, box_index, i, j, l.w, l.h, net.w, net.h, l.delta, 

 (2-truth.w*truth.h), l.w*l.h); 
 
                int obj_index = entry_index(l, b, mask_n*l.w*l.h + j*l.w + i, 4); 
                avg_obj += l.output[obj_index]; 
                l.delta[obj_index] = 1 - l.output[obj_index]; 
 
                int class = net.truth[t*(4 + 1) + b*l.truths + 4]; 
                if (l.map) class = l.map[class]; 
                int class_index = entry_index(l, b, mask_n*l.w*l.h + j*l.w + i, 4 + 1); 
                delta_yolo_class(l.output, l.delta, class_index, class, l.classes, l.w*l.h, &avg_cat); 
 
                ++count; 
                ++class_count; 
                if(iou > .5) recall += 1; 
                if(iou > .75) recall75 += 1; 
                avg_iou += iou; 
            } 
…… 

For your reference, I installed darkent on an Eclipse IDE for C/C++, which helps manage files and 

search better. For example, Figure C.10 shows how to search a string pattern from all C source files 

under the Remote Search tab. 

 

Note: Some tips about how to navigate through the YOLOv3 source code or any C/C++ programs on 

Eclipse for C/C++ projects:  

▪ Viewing the definition of a function: Place your cursor to a function name called in the current 

function, and a pop-up window will show the definition of that function, which can be fully viewed 

by scrolling up and down. 

▪ Jumping forward to where a function is defined: Place your cursor to a function name called in the 

current function, right-click and select Open Declaration. 

▪ Jumping backward to a caller: Place your cursor to a function name called in the current function, 

right-click and select Open Call Hierarchy. Then in the Call Hierarchy window, right-click on the 

caller and select Open. 
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Figure C.10 Search capability from the Eclipse IDE for C/C++. 

It‟s amazing that the entire darknet library is written in C with just 45 files with a total size of ~455 kB, 

as shown below:

12746 yolo_layer.c 
14476 utils.c 

3243 upsample_layer.c 
3730 tree.c 

3552 softmax_layer.c 
2940 shortcut_layer.c 
3937 route_layer.c 
10093 rnn_layer.c 
5037 reorg_layer.c 
19388 region_layer.c 
44504 parser.c 
3121 option_list.c 
5532 normalization_layer.c 
30214 network.c 
3940 maxpool_layer.c 
4262 matrix.c 
24438 lstm_layer.c 
2095 logistic_layer.c 
8929 local_layer.c 
1370 list.c 
4471 layer.c 
1794 l2norm_layer.c 
42105 image.c 
1337 im2col.c 
13715 gru_layer.c 

8188 gemm.c 
1606 dropout_layer.c 
10201 detection_layer.c 
10568 demo.c 
9787 deconvolutional_layer.c 
44905 data.c 
4095 cuda.c 
2759 crop_layer.c 
9388 crnn_layer.c 
5174 cost_layer.c 
18620 convolutional_layer.c 
11056 connected_layer.c 
10819 compare.c 
1340 col2im.c 
8435 box.c 
9397 blas.c 
10366 batchnorm_layer.c 
1877 avgpool_layer.c 
3560 activations.c 
1707 activation_layer.c 
454817 total_size_in_byt



 

 

The examples directory contains the driver code for specific examples, including darknet.c, detector.c, 

network.c, etc., which call darknet library functions defined in the src directory. The code execution path 

with the COCO training example will be illustrated in the next section. 

Once again, from the previous output lines, it shows that the first batch of 64 images took about 1017/60 

= 17 minutes or each image took about 1017/64 = 16 seconds, and the second batch of 64 images took 

about 1039/60 = 17 minutes as well or each image took about 1039/64 = 16 seconds as well. I started 

training on April 21, and as of May 27, I got: 

1056: 10.239875, 7.783431 avg, 0.001000 rate, 1969.657717 seconds, 67584 images 

That is, the training reached batch # 1056 with an average loss of 7.783431. Compared with the loss of 

728 at batch #1, the loss is about 100x smaller, but still a long way to reach the end of 500200 batches or 

iterations as specified in the original yolov3.cfg file! This motivated me to speed it up on my 

MacBook, as described next. 

C.2.5 PROFILING YOLO 

YOLO is written in C. You might want to know how YOLO is coded exactly, in which case a call graph 

will help. Or, you might want to analyze YOLO‟s performance as a software program, in which case, 

you need to profile YOLO while it is running. I had similar interests and figured out how we can do this 

easily. It turned out that using Instruments - the profiling feature of the XCode IDE on macOS - is the 

easiest way out of several options. In this section, I share my experience with you on how to obtain call 

graphs and CPU usage profiles with the Instruments tool on macOS. 

To use Instruments, you need to have XCode and its Command Line Tools installed on your macOS, 

which you should already have if you did not skip §C.2.1.  Then, just fire up darknet with a training task 

such as the one with COCO we demonstrated earlier. The next step is to find the process id (PID) of 

darknet, as shown from the Activity Monitor in Figure C.11, which was 13557 in my case. Finally, 

execute the following command with the darknet‟s PID as shown below as in my case: 

$ instruments -l 60000 -t Time\ Profiler -p 13557 

The above command instructs the Instruments tool to instrument the darknet process for 60000 

milliseconds or 60 seconds while it is running. If you get an error like 

xcode-select: error: tool 'instruments' requires Xcode, but active developer directory 
'/Library/Developer/CommandLineTools' is a command line tools instance 

then, executing the following command should fix it as in my case: 

$ sudo xcode-select -s /Applications/Xcode.app/Contents/Developer 
 

 

Figure C.11 The PID of the darknet process displayed on the Activity Monitor. 
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After the specified amount of time has passed, look for the Instruments icon on the Dock as shown in 

Figure C.12 below: 

 

Figure C.12 The Instruments icon on the Dock.  

Clicking on the above icon should bring up the Instruments panel as shown in Figure C.13. As you see, I 

got both the call graph and CPU stats in one shot. It is seen that darknet‟s main function calls the 

train_detector function, which calls the train_network function, which in turn calls the 

train_network_datum function and the get_next_batch function. 

 

Figure C.13 The darknet CPU stats profiled with the Instruments tool 

I drilled down further by expanding the train_network_datum function, as shown in Figure C.14. It is 

seen that the train_network_datum function called two more functions: forward_network and 

backward_convolutional_layer, which took ~87% and ~13% of the total CPU time, respectively. 

Figure C.15 shows the entire call graph in more details. 

 

Figure C.14 CPU time breakdown between the darknet‟s two functions of forward_network and 

backward_convolutional_layer as revealed by the Instruments tool. 
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Figure C.15 The darknet call graph as revealed with the Instruments tool. 

As shown in Fig. C.15, the program execution begins with the main function in darknet.c. The 

“detector” argument initiates calling the function train_detector in detector.c. Then, the “train” 

argument initiates calling the function train_network in network.c, which calls the 

train_network_datum in network.c in turn. Refer to Listing C.21 for how this function is coded. As you 

see, this is where how forward_network and backward_network functions are called, how error is 

computed, and how the network is updated by calling the update_network function, which was not 

recorded during this profiling, as it was called only every subdivision or 16 images, which would take 

about ~50 minutes – much longer than the profiling duration of one minute or so. However, this is the 

part that involves the input model parameters of momentum = 0.9  and decay = 0.0005 as shown in 

the yolov3.cfg file given in §C.2.4, which are explained further next.  
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Listing C.21 Function train_network_datum(network *net)  (in network.c) 

289 float train_network_datum(network *net) 
290 { 
291     *net->seen += net->batch; 
292     net->train = 1; 
293     forward_network(net); 
294     backward_network(net); 
295     float error = *net->cost; 
296     if(((*net->seen)/net->batch)%net->subdivisions == 0)  

update_network(net); 

297     return error; 
298 } 

To understand how the forward_network function calls the forward_convolutional_layer function, 

we show the forward_network function in Listing C.22. This function essentially loops through all 

layers defined for a given network with the for-loop defined from line 198 to 209. The line 204 initiates 

the call to the forward_convolutional_layer function, defined at line 221 with the function 

make_convolutional_layer in convolutional_layer.c, shown in Listing C.23. This function 

demonstrates how a convolutional layer is made. Listing C.24 shows how YOLOV3 implemented the 

key CNN functions of forward_convolutional_layer, backward_convolutional_layer, and 

update_convolutional_layer. These functions explain how these common CNN layers work, as is 

explained further next.  

Listing C.22 Function forward_network(network *net)  (in network.c) 

188 void forward_network(network *netp) 
189 { 
190 #ifdef GPU 
191     if(netp->gpu_index >= 0){ 
192         forward_network_gpu(netp);    
193         return; 
194     } 
195 #endif 
196     network net = *netp; 
197     int i; 
198     for(i = 0; i < net.n; ++i){ 
199         net.index = i; 
200         layer l = net.layers[i]; 
201         if(l.delta){ 
202             fill_cpu(l.outputs * l.batch, 0, l.delta, 1); 
203         } 
204         l.forward(l, net); 
205         net.input = l.output; 
206         if(l.truth) { 
207             net.truth = l.output; 
208         } 
209     } 
210     calc_network_cost(netp); 
211 } 
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Listing C.23 Function make_convolutional_layer (in src/convolutional_layer.c) 

176 convolutional_layer make_convolutional_layer(int batch, int h, int w, int 
c, int n, int groups, int size, int stride, int padding, ACTIVATION 

activation, int batch_normalize, int binary, int xnor, int adam) 

177 { 
178     int i; 
179     convolutional_layer l = {0}; 
180     l.type = CONVOLUTIONAL; 
181  
182     l.groups = groups; 
183     l.h = h; 
184     l.w = w; 
185     l.c = c; 
186     l.n = n; 
187     l.binary = binary; 
188     l.xnor = xnor; 
189     l.batch = batch; 
190     l.stride = stride; 
191     l.size = size; 
192     l.pad = padding; 
193     l.batch_normalize = batch_normalize; 
194  
195     l.weights = calloc(c/groups*n*size*size, sizeof(float)); 
196     l.weight_updates = calloc(c/groups*n*size*size, sizeof(float)); 
197  
198     l.biases = calloc(n, sizeof(float)); 
199     l.bias_updates = calloc(n, sizeof(float)); 
200  
201     l.nweights = c/groups*n*size*size; 
202     l.nbiases = n; 
203  
204     // float scale = 1./sqrt(size*size*c); 
205     float scale = sqrt(2./(size*size*c/l.groups)); 
206     //printf("convscale %f\n", scale); 
207     //scale = .02; 
208     //for(i = 0; i < c*n*size*size; ++i) l.weights[i] =  

scale*rand_uniform(-1, 1); 

209     for(i = 0; i < l.nweights; ++i) l.weights[i] = scale*rand_normal(); 
210     int out_w = convolutional_out_width(l); 
211     int out_h = convolutional_out_height(l); 
212     l.out_h = out_h; 
213     l.out_w = out_w; 
214     l.out_c = n; 
215     l.outputs = l.out_h * l.out_w * l.out_c; 
216     l.inputs = l.w * l.h * l.c; 
217  
218     l.output = calloc(l.batch*l.outputs, sizeof(float)); 
219     l.delta  = calloc(l.batch*l.outputs, sizeof(float)); 
220  
221     l.forward = forward_convolutional_layer; 
222     l.backward = backward_convolutional_layer; 
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223     l.update = update_convolutional_layer; 
224     if(binary){ 
225         l.binary_weights = calloc(l.nweights, sizeof(float)); 
226         l.cweights = calloc(l.nweights, sizeof(char)); 
227         l.scales = calloc(n, sizeof(float)); 
228     } 
229     if(xnor){ 
230         l.binary_weights = calloc(l.nweights, sizeof(float)); 
231         l.binary_input = calloc(l.inputs*l.batch, sizeof(float)); 
232     } 
233  
234     if(batch_normalize){ 
235         l.scales = calloc(n, sizeof(float)); 
236         l.scale_updates = calloc(n, sizeof(float)); 
237         for(i = 0; i < n; ++i){ 
238             l.scales[i] = 1; 
239         } 
240  
241         l.mean = calloc(n, sizeof(float)); 
242         l.variance = calloc(n, sizeof(float)); 
243  
244         l.mean_delta = calloc(n, sizeof(float)); 
245         l.variance_delta = calloc(n, sizeof(float)); 
246  
247         l.rolling_mean = calloc(n, sizeof(float)); 
248         l.rolling_variance = calloc(n, sizeof(float)); 
249         l.x = calloc(l.batch*l.outputs, sizeof(float)); 
250         l.x_norm = calloc(l.batch*l.outputs, sizeof(float)); 
251     } 
252     if(adam){ 
253         l.m = calloc(l.nweights, sizeof(float)); 
254         l.v = calloc(l.nweights, sizeof(float)); 
255         l.bias_m = calloc(n, sizeof(float)); 
256         l.scale_m = calloc(n, sizeof(float)); 
257         l.bias_v = calloc(n, sizeof(float)); 
258         l.scale_v = calloc(n, sizeof(float)); 
259     } 
260  

…… 

322     l.workspace_size = get_workspace_size(l); 
323     l.activation = activation; 
324  
325     fprintf(stderr, "conv  %5d %2d x%2d /%2d  %4d x%4d x%4d   ->  %4d x%4d 

x%4d  %5.3f BFLOPs\n", n, size, size, stride, w, h, c, l.out_w, l.out_h, 

l.out_c, (2.0 * l.n * l.size*l.size*l.c/l.groups * 

l.out_h*l.out_w)/1000000000.); 

326  
327     return l; 
328 } 

Listing C.24 Function forward_convolutional_layer (in src/convolutional_layer.c) 
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445 void forward_convolutional_layer(convolutional_layer l, network net) 
446 { 
447     int i, j; 
448  
449     fill_cpu(l.outputs*l.batch, 0, l.output, 1); 
450  
451     if(l.xnor){ 
452         binarize_weights(l.weights, l.n, l.c/l.groups*l.size*l.size,  

l.binary_weights); 

453         swap_binary(&l); 
454         binarize_cpu(net.input, l.c*l.h*l.w*l.batch, l.binary_input); 
455         net.input = l.binary_input; 
456     } 
457  
458     int m = l.n/l.groups; 
459     int k = l.size*l.size*l.c/l.groups; 
460     int n = l.out_w*l.out_h; 
461     for(i = 0; i < l.batch; ++i){ 
462         for(j = 0; j < l.groups; ++j){ 
463             float *a = l.weights + j*l.nweights/l.groups; 
464             float *b = net.workspace; 
465             float *c = l.output + (i*l.groups + j)*n*m; 
466  
467             im2col_cpu(net.input + (i*l.groups + j)*l.c/l.groups*l.h*l.w, 
468                 l.c/l.groups, l.h, l.w, l.size, l.stride, l.pad, b); 
469             gemm(0,0,m,n,k,1,a,k,b,n,1,c,n); 
470         } 
471     } 
472  
473     if(l.batch_normalize){ 
474         forward_batchnorm_layer(l, net); 
475     } else { 
476         add_bias(l.output, l.biases, l.batch, l.n, l.out_h*l.out_w); 
477     } 
478  
479     activate_array(l.output, l.outputs*l.batch, l.activation); 
480     if(l.binary || l.xnor) swap_binary(&l); 
481 } 
482  
483 void backward_convolutional_layer(convolutional_layer l, network net) 
484 { 
485     int i, j; 
486     int m = l.n/l.groups; 
487     int n = l.size*l.size*l.c/l.groups; 
488     int k = l.out_w*l.out_h; 
489  
490     gradient_array(l.output, l.outputs*l.batch, l.activation, l.delta); 
491  
492     if(l.batch_normalize){ 
493         backward_batchnorm_layer(l, net); 
494     } else { 
495         backward_bias(l.bias_updates, l.delta, l.batch, l.n, k); 
496     } 
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497  
498     for(i = 0; i < l.batch; ++i){ 
499         for(j = 0; j < l.groups; ++j){ 
500             float *a = l.delta + (i*l.groups + j)*m*k; 
501             float *b = net.workspace; 
502             float *c = l.weight_updates + j*l.nweights/l.groups; 
503  
504             float *im = net.input+(i*l.groups + j)*l.c/l.groups*l.h*l.w; 
505  
506             im2col_cpu(im, l.c/l.groups, l.h, l.w,  
507                     l.size, l.stride, l.pad, b); 
508             gemm(0,1,m,n,k,1,a,k,b,k,1,c,n); 
509  
510             if(net.delta){ 
511                 a = l.weights + j*l.nweights/l.groups; 
512                 b = l.delta + (i*l.groups + j)*m*k; 
513                 c = net.workspace; 
514  
515                 gemm(1,0,n,k,m,1,a,n,b,k,0,c,k); 
516  
517                 col2im_cpu(net.workspace, l.c/l.groups, l.h, l.w, l.size,  

l.stride,  

518                     l.pad, net.delta + (i*l.groups +  
j)*l.c/l.groups*l.h*l.w); 

519             } 
520         } 
521     } 
522 } 
523  
524 void update_convolutional_layer(convolutional_layer l, update_args a) 
525 { 
526     float learning_rate = a.learning_rate*l.learning_rate_scale; 
527     float momentum = a.momentum; 
528     float decay = a.decay; 
529     int batch = a.batch; 
530  
531     axpy_cpu(l.n, learning_rate/batch, l.bias_updates, 1, l.biases, 1); 
532     scal_cpu(l.n, momentum, l.bias_updates, 1); 
533  
534     if(l.scales){ 
535         axpy_cpu(l.n, learning_rate/batch, l.scale_updates, 1, l.scales,  

1); 

536         scal_cpu(l.n, momentum, l.scale_updates, 1); 
537     } 
538  
539     axpy_cpu(l.nweights, -decay*batch, l.weights, 1, l.weight_updates, 1); 
540     axpy_cpu(l.nweights, learning_rate/batch, l.weight_updates, 1,  

l.weights, 1); 

541     scal_cpu(l.nweights, momentum, l.weight_updates, 1); 
542 } 
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In general, without taking into account of the momentum and decay, the weights would be updated as 

follows: 

         〈
  

  
   

〉                                                                                               
      

, where L is the loss,  the learning rate, and Di the current batch. The gradient term is computed based 

on the back propagation we described in Chapter 9. YOLOv3 implementation of this term can be found 

in the function of backward_convolutional_layer in convolutional_layer.c,  as shown in Listing 

C.24. It would be an interesting exercise to further drill down how the gradient_array function is 

defined, etc. 

The PDF file http://vision.stanford.edu/teaching/cs231b_spring1415/slides/alexnet_tugce_kyunghee.pdf 

shows Alex‟s original work, demonstrating how weights are updated in two steps as follows, when the 

momentum and decay terms are taken into account: 

                             〈
  

  
   

〉                
       

                                                                                                             

, where vi is the preceding correction. It‟s now clear that the gradient term in (C.2a) is computed in the 

function of backward_convolutional_layer in convolutional_layer.c,  as shown in Listing C.24, 

while all other terms are computed and combined in the function of update_convolutional_layer in 

convolutional_layer.c. The forward_convolutional_layer function performs the matrix 

multiplications between the input and weight matrices to generate the outputs. 

Figure C.15 shows that both the forward and backward convolutional layers call the gemm function, 

which took about 80% of the total CPU time. The update convolutional layer calls the axpy function in 

place of the gemm function, though. These two functions of gemm and axpy are explained further in the 

next section. 

C.2.6 THE GEMM AND AXPY FUNCTIONS 

So what are the gemm and axpy functions after all? Listing C.25 shows the CPU-version of the gemm 

function from lines 145-166, together with two of its variants of gemm_nn shown from line 74 to 89 and 

gemm_tt shown from line 126 to 142, respectively. Listing C.26 shows the CPU version of the axpy 

function, together with the scale and fill functions as well.  

As is explained in wiki https://en.wikipedia.org/wiki/Basic_Linear_Algebra_Subprograms, the BLAS 

(Basic Linear Algebra Subprograms) spec specifies three levels of vector-matrix computations as 

follows: 

▪ Level 1 (axpy): y ← x + y where x and y are vectors and  is a coefficient. 

▪ Level 2 (gemv – generalized matrix-vector multiplication): y ← Ax +y where matrix A and 

coefficient  are added. 

▪ Level 3 (gemm – general matrix multiplication): C ← AB +C where vectors x and y in level 2 

(gemv) are replaced with matrices B and C, respectively. 

http://vision.stanford.edu/teaching/cs231b_spring1415/slides/alexnet_tugce_kyunghee.pdf
https://en.wikipedia.org/wiki/Basic_Linear_Algebra_Subprograms
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As is seen, these functions are essentially multiplication functions involving constant coefficients, 

vectors and matrices. They are in general optimized and tuned on most particular platforms. Not 

surprisingly, they are at the core of machine learning in general and deep learning in particular.  

To help you understand gemm a bit deeper, I added the next section with a standalone C program to 

illustrate exactly how general matrix multiplications are carried out with the gemm function implemented 

in YOLO. 

Listing C.25 Function gemm (in src/gemm.c) 

74 void gemm_nn(int M, int N, int K, float ALPHA,  
75         float *A, int lda,  
76         float *B, int ldb, 
77         float *C, int ldc) 
78 { 
79     int i,j,k; 
80     #pragma omp parallel for 
81     for(i = 0; i < M; ++i){ 
82         for(k = 0; k < K; ++k){ 
83             register float A_PART = ALPHA*A[i*lda+k]; 
84             for(j = 0; j < N; ++j){ 
85                 C[i*ldc+j] += A_PART*B[k*ldb+j]; 
86             } 
87         } 
88     } 
89 } 

 

126 void gemm_tt(int M, int N, int K, float ALPHA,  
127         float *A, int lda,  
128         float *B, int ldb, 
129         float *C, int ldc) 
130 { 
131     int i,j,k; 
132     #pragma omp parallel for 
133     for(i = 0; i < M; ++i){ 
134         for(j = 0; j < N; ++j){ 
135             register float sum = 0; 
136             for(k = 0; k < K; ++k){ 
137                 sum += ALPHA*A[i+k*lda]*B[k+j*ldb]; 
138             } 
139             C[i*ldc+j] += sum; 
140         } 
141     } 
142 } 
143  
144  
145 void gemm_cpu(int TA, int TB, int M, int N, int K, float ALPHA,  
146         float *A, int lda,  
147         float *B, int ldb, 
148         float BETA, 
149         float *C, int ldc) 
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150 { 
151     //printf("cpu: %d %d %d %d %d %f %d %d %f %d\n",TA, TB, M, N, K,  

ALPHA, lda, ldb, BETA, ldc); 

152     int i, j; 
153     for(i = 0; i < M; ++i){ 
154         for(j = 0; j < N; ++j){ 
155             C[i*ldc + j] *= BETA; 
156         } 
157     } 
158     if(!TA && !TB) 
159         gemm_nn(M, N, K, ALPHA,A,lda, B, ldb,C,ldc); 
160     else if(TA && !TB) 
161         gemm_tn(M, N, K, ALPHA,A,lda, B, ldb,C,ldc); 
162     else if(!TA && TB) 
163         gemm_nt(M, N, K, ALPHA,A,lda, B, ldb,C,ldc); 
164     else 
165         gemm_tt(M, N, K, ALPHA,A,lda, B, ldb,C,ldc); 
166 } 

Listing C.26 CPU-version of the axpy, scale, and fill functions (in src/blas.c) 

178 void axpy_cpu(int N, float ALPHA, float *X, int INCX, float *Y, int INCY) 
179 { 
180     int i; 
181     for(i = 0; i < N; ++i) Y[i*INCY] += ALPHA*X[i*INCX]; 
182 } 
183  
184 void scal_cpu(int N, float ALPHA, float *X, int INCX) 
185 { 
186     int i; 
187     for(i = 0; i < N; ++i) X[i*INCX] *= ALPHA; 
188 } 
189  
190 void fill_cpu(int N, float ALPHA, float *X, int INCX) 
191 { 
192     int i; 
193     for(i = 0; i < N; ++i) X[i*INCX] = ALPHA; 
194 } 

C.2.7 GENERAL MATRIX MULTIPLICATION (GEMM) EXAMPLES 

From the computational point of view, machine learning is mostly about matrix multiplications, which is 

why the gemm function turned out to be responsible for ~80% of the CPU utilizations for a YOLOv3 

training example, as illustrated in Figure C.15. Therefore, it is not too exaggerating to say that if you 

know how to make gemm run super-fast from either hardware or software perspective, you can have your 

own business. 

Next, I‟d like to share an example I worked out to illustrate how gemm is implemented in YOLOv3 and 

how it works in general. It is a standalone C project named ml01 that I created on the Eclipse IDE for 

C/C++ Developers, as shown in Figure C.16. There are essentially four files: ml01.c, gemm.h, gemm.c 
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and makefile. I created the ml10.c and makefile myself, with gemm.h and gemm.c moved over from 

the original darknet project directory to make it “standalone.”  

 

Figure C.16 The standalone C project illustrating how gemm works. 

There are two ways to build this project. The easiest is to open up a Terminal and change to the src 

directory, and then issue the following command: 

$gcc –o a.out *.c 

An alternative is to change to the Release directory and issue the following command: 

$make –k all 

With the above command, “-k” means “Keep going when some targets can't be made.” 

Note that the second approach is preferred if your project is large and more complicated. If you take this 

approach, you need to understand at least the following: 

▪ The makefile, objects.mk and sources.mk in the Release directory are automatically generated 

from the makefile in the main directory. Therefore, make changes to the makefile in the main 

directory only if needed. 

▪ You may want to spend a few minutes to get familiar with those gcc flags as shown below (or type 

gcc –help on the command prompt to look up yourself): 

 -c: Compile or assemble the source files but do not link. 



382                        MACHINE LEARNING: A QUANTITATIVE APPROACH

 

   

 -o file: Write output as an executable to file. 

 -g: Generate source level debug information. 

Now, revisit Listing C.25 to see how gemm_nn and gemm_cpu are implemented. You can now correlate 

those functions with the ml01.c program as shown in Listing C.27. You can start with the main function, 

which calls the demo function and the gemm_test function. The demo function illustrates a simple 

example with known result, whereas the gemm_test function allows us to experiment with larger 

matrices and more iterations with command line arguments. I suggest that you uncomment line 124 in 

Listing C.27, build and run this program first as follows, and make sure you get the following output 

from the demo function: 

henryliu:src henryliu$ gcc -framework ACCELERATE -o a.out ml01.c gemm.c  
henryliu:Release henryliu$ ./ml01 
…… 
array c in matrix format: 
[ 1007.76, 1008.12 
  1014.06, 1014.72 ] 
…… 

In the above command, the program is compiled with Apple‟s Accelerate framework, which has Apple‟s 

C-library for computationally intensive calculations. We will discuss more about this in the next section. 

Next, let‟s dive a bit deeper into this simple program and see what we can learn from it about gemm, 

following the end of Listing C.27. 

Listing C.27 ml01.c 

1 #include <stdio.h> 

2 #include <stdlib.h> 

3 #include <time.h> 

4 #include <math.h> 

5 #include "gemm.h" 

6 #include <Accelerate/Accelerate.h> 

7 #include <assert.h> 

8  

9 /* 

10 [ 0.11 0.12 0.13 ]  [ 11 12 ]     [ 7.76 8.12 ] 
11 [ 0.21 0.22 0.23 ]  [ 21 22 ]  =  [ 4.06 4.72 ] 
12                     [ 31 32 ] 
13 */ 
14 void demo () { 
15  puts("Hello, gemm!!!"); 

16  int m = 2, k = 3, lda = 3; 

17  float a[] = { 0.11, 0.12, 0.13, 

18       0.21, 0.22, 0.23 }; 

19  
20  int n = 2, ldb = 2; 

21  float b[] = { 11, 12, 

22                21, 22, 

23                31, 32 }; 

24  int ldc = 2; 
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25  float c[] = { 1000.00, 1000.00, 

26                1000.00, 1000.00 }; 

27  
28  puts("print array a ..."); 

29  for (int i = 0; i < m; i++) 

30   for (int j = 0; j < k; j++) 

31    printf ("%i, %i, %g\n", i, j, a[i*lda +j]); 

32  
33  puts("\nprint array b ..."); 

34  for (int i = 0; i < k; i++) 

35   for (int j = 0; j < n; j++) 

36    printf ("%i, %i, %g\n", i, j, b[i*ldb +j]); 

37  
38  // "0, 0" means no transpose 

39     gemm(0, 0, 2, 2, 3, 1.0, a, 3, b, 2, 1, c, 2); 
40  
41  puts("\nprint array c ..."); 

42  for (int i = 0; i < m; i++) 

43   for (int j = 0; j < n; j++) 

44    printf ("%i, %i, %g\n", i, j, c[i*ldc +j]); 

45  printf ("\narray c in matrix format:\n[ %g, %g\n", c[0], c[1]); 

46  printf ("  %g, %g ]\n", c[2], c[3]); 

47 } 
48  
49 void init_array (float *c, int N) { 
50  for (int i = 0; i < N; i++) { 

51   c[i] = 0.0; 

52  } 

53 } 
54  
55 void gemm_test (int m, int k, int n, int lda, int ldb, int ldc, float 

alpha, float beta, int iter) { 

56  puts("\ngemm_test ..."); 

57  float *a = random_matrix (m, k); 

58  float *b = random_matrix (k, n); 

59  float *c = random_matrix (m, n); 

60  float *c1 = malloc (m*n*sizeof(float)); 

61  memcpy(c1, c, m*n*sizeof(float)); 

62  
63  for (int i = 0; i < m * n; i++) 

64   assert (c[i] == c1[i]); 

65  printf("c == c1 after memcpy\n"); 

66  
67     clock_t start = clock(), end; 
68     for (int i = 0; i < iter; i++) { 
69       //init_array(c, m*n); 

70       gemm(0, 0, m, n, k, alpha, a, m, b, k, beta, c, n); 

71     } 
72  
73     double flop = ((double)m)*n*(2.*k + 2.)*iter; 
74     double gflop = flop/pow(10., 9); 
75     end = clock(); 
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76     double seconds = ((double) (end - start)) / CLOCKS_PER_SEC; 
77     printf("gemm: Matrix Multiplication %dx%d * %dx%d: %lf s, %lf  

GFLOPS\n",m,k,k,n, seconds, gflop/seconds); 

78  
79  puts("\nprint array c (partial) from gemm_test ..."); 

80  for (int i = 0; i < 2; i++) 

81   for (int j = 0; j < 2; j++) 

82    printf ("%i, %i, %lf\n", i, j, c[i*ldc +j]); 

83  
84  
85  start = clock(); 

86     for (int i = 0; i < iter; i++) { 
87       //init_array(c1, m*n); 

88       cblas_sgemm(101, 111,111, m, n, k, alpha, a, lda, b, ldb, beta, c1,  

ldc); 

89     } 
90  
91     end = clock(); 
92     seconds = ((double) (end - start)) / CLOCKS_PER_SEC; 
93     printf("cblas_gemm: Matrix Multiplication %dx%d * %dx%d: %lf s, %lf  

GFLOPS\n",m,k,k,n, seconds, gflop/seconds); 

94  
95  puts("\nprint array c (partial) from gemm_test ..."); 

96  for (int i = 0; i < 2; i++) 

97   for (int j = 0; j < 2; j++) 

98    printf ("%i, %i, %lf\n", i, j, c1[i*ldc +j]); 

99  
100  /* c and c1 are not exactly the same 

101  for (int i = 0; i < m * n; i++) { 

102   printf ("%i, %lf, %lf\n", i, c[i], c1[i]); 

103   assert (c[i] == c1[i]); 

104  } 

105  */ 

106  //printf("Passed\n"); 

107     free(a), free(b), free(c), free(c1); 
108 } 
109 int main(int argc, char *argv[]) { 
110  int m = 2, k = 3, n = 2; 

111  int lda = k, ldb = n, ldc = n; 

112  int iter = 10; 

113  float alpha = 1.0, beta = 1.0; 

114  //demo(); 

115  
116     for (int i = 0; i < argc; ++i) 
117         printf("%i: %s ", i, argv[i]); 
118  
119  if (argc == 5) { 

120   m = atoi(argv[1]); 

121   k = atoi(argv[2]); 

122   n = atoi(argv[3]); 

123   iter = atoi(argv[4]); 

124  } else { 

125   m = 64, k = 64, n = 64, iter = 10; 
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126  } 

127  
128  lda = k, ldb = n, ldc = n; 

129  gemm_test(m, k, n, lda, ldb, ldc, alpha, beta, iter); 

130  return EXIT_SUCCESS; 

131 }  

First of all, we need to understand that matrices are 2D data structures, but represented in C as 1D arrays 

under the assumption of “row-major,” which means that the arrays start with row 1, then row 2, …, and 

so on, sequentially. Secondly, the gemm function can specify whether matrix A or B or both are to be 

transposed. For example, the function gemm_nn means matrices A and B are taken with no transposition, 

while the function gemm_tt means both  A and B are to be transposed. For simplicity, we assume that we 

deal with not-to-be-transposed matrices only, or the function gemm_nn only, or TA = TB = 0 at line 145 

or line 158 in Listing C.25.  

Then, it‟s important to get the dimensions of the matrices right. There is a simple verification rule that a 

(m rows) (k columns) matrix A multiplied by a (k rows) (n columns) matrix B would yield a (m rows) (n 

columns) matrix C, or (m  k)(k  n) => (m n). The other parameters of (lda, ldb, ldc) are simply the 

number of columns for matrices a, b and c, respectively. 

Once you understand the above points, it‟s easy to follow through the main function in Listing C.27. 

When you run the ml01 program with no additional parameters, it will call demo() function first if not 

commented out and then call gemm_test with a (6464) matrix for a and (6464) matrix for b for 10 

iterations, if no additional command line arguments are given. You can compile the program ml01 and 

run the program by adding additional parameters of (m, k , n, iter) with the intended matrix dimensions 

and iteration as follows: 

henryliu:src henryliu$ gcc -framework ACCELERATE -o a.out ml01.c gemm.c  
henryliu:Release henryliu$ ./a.out 64 64 64 100000 
0: ./a.out 1: 64 2: 64 3: 64 4: 10000  
gemm_test ... 
c == c1 after memcpy 
gemm: Matrix Multiplication 64x64 * 64x64: 7.443356 s, 0.715376 GFLOPS 
 
print array c (partial) from gemm_test ... 
0, 0, 156576.281250 
0, 1, 142320.734375 
1, 0, 163024.203125 
1, 1, 155483.562500 
cblas_gemm: Matrix Multiplication 64x64 * 64x64: 0.105836 s, 50.311803 GFLOPS 
 
print array c (partial) from gemm_test ... 
0, 0, 156578.265625 
0, 1, 142277.062500 
1, 0, 163063.640625 
1, 1, 155520.109375 

As you see from the gemm_test function in Listing C.27, with given arrays of a, b and c, the program 

calls the gemm function implemented in YOLOv3 first and then the cblas_sgemm function from Apple‟s 
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Accelerate framework. For example, the above run took ~7.4 seconds and achieved ~0.7 GFLOPS (Giga 

floating point operations per second) or 0.7 billion flops with the gemm function versus ~0.1 seconds and 

achieved ~50 GFLOPS with the cblas_sgemm function, i.e., Apple‟s cblas_gemm function is 74x faster 

than the gemm function implemented in YOLOv3 in C. If you wonder how the number of floating point 

operations is estimated, it is given at line 73 in Listing C.27 as follows: 

    double flop = ((double)m)*n*(2.*k + 2.)*iter; 

This is how it is estimated in the original gemm.c function implemented in YOLOv3. 

If you run the same program as above, you may get a different GFLOPS number on your machine, but 

the partial result listed at the end should remain the same, since the same random_matrix function 

implemented in the same gemm function is used every time. I also made a random_matrix2 function in 

gemm.c for this project with all randomly generated floating point data centered around “0” but the 

results were similar except that some elements in the array c had negative numbers. In addition, I‟d like 

to mention that memory allocated to each array needs to be de-allocated properly as well. 

Since this is a standalone program, you can experiment as much as you can. For example, I removed the 

“register” modifier in the following statement in gemm.c: 

            //register float A_PART = ALPHA*A[i*lda+k]; 
            float A_PART = ALPHA*A[i*lda+k]; 

and it made very little difference in terms of performance. 

C.2.8 ACCELERATING YOLOV3’S GEMM ON MAC OS WITH APPLE’S ACCELERATE 

FRAMEWORK 

The test results illustrated in the preceding section with 6464 matrices show that Apple‟s cblas_sgemm 

function from its Accelerate framework is about 50/0.7 = 71 times faster than the gemm function 

implemented in C in YOLOv3. Since the machine I used to run the test is a latest MacBook Pro, I 

wanted to try out more to see how much faster the same gemm test runs could go if I used Apple‟s 

Accelerate framework on MacOS.  

To achieve the above objective, I added the following header in ml01.c: 

#include <Accelerate/Accelerate.h> 

Then, I made the gemm_test function to call the cblas_sgemm function at line 88 as follows: 

cblas_sgemm(101, 111, 111, m, n, k, alpha, a, lda, b, ldb, beta, c1,  

ldc) 

where the item “101” means CblasRowMajor and the term “111” means CblasNoTrans, respectively.  

The document at https://developer.apple.com/documentation/accelerate/blas/cblas_transpose shows more 

options for the first three parameters of the cblas_sgemm function as follows: 

enum CBLAS_TRANSPOSE { 
   CblasNoTrans=111, 
   CblasTrans=112, 
   CblasConjTrans=113, 
   AtlasConj=114 

https://developer.apple.com/documentation/accelerate/blas/cblas_transpose
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}; 
typedef enum CBLAS_TRANSPOSE CBLAS_TRANSPOSE 

And here is the document https://developer.apple.com/documentation/accelerate/1513264-

cblas_sgemm?language=objc showing the signature of the cblas_sgemm function: 

void cblas_sgemm(const enum CBLAS_ORDER __Order, const enum CBLAS_TRANSPOSE __TransA, const enum 
CBLAS_TRANSPOSE __TransB, const int __M, const int __N, const int __K, const float __alpha, const float *__A, 
const int __lda, const float *__B, const int __ldb, const float __beta, float *__C, const int __ldc); 

Once again, I re-compiled the ml01.c program with the following command: 

$gcc -framework Accelerate ml01.c gemm.c 

Then I ran more tests with 128128  and  256256 matrices, with all results listed below:: 

henryliu:src henryliu$ ./a.out  128 128 128 10000 
0: ./a.out 1: 128 2: 128 3: 128 4: 10000  
gemm_test ... 
c == c1 after memcpy 
gemm: Matrix Multiplication 128x128 * 128x128: 50.783187 s, 0.832376 GFLOPS 
 
print array c (partial) from gemm_test ... 
0, 0, 282547.093750 
0, 1, 312655.281250 
1, 0, 321351.843750 
1, 1, 333862.968750 
cblas_gemm: Matrix Multiplication 128x128 * 128x128: 1.039302 s, 40.672220 GFLOPS 
 
print array c (partial) from gemm_test ... 
0, 0, 282617.656250 
0, 1, 312713.250000 
1, 0, 321226.312500 
1, 1, 333843.156250 
 
henryliu:src henryliu$ ./a.out  256 256 256 10000 
0: ./a.out 1: 256 2: 256 3: 256 4: 10000  
gemm_test ... 
c == c1 after memcpy 
gemm: Matrix Multiplication 256x256 * 256x256: 390.243553 s, 0.863192 GFLOPS 
 
print array c (partial) from gemm_test ... 
0, 0, 657736.125000 
0, 1, 603507.000000 
1, 0, 607466.937500 
1, 1, 564777.000000 
cblas_gemm: Matrix Multiplication 256x256 * 256x256: 8.805666 s, 38.254351 GFLOPS 
 
print array c (partial) from gemm_test ... 
0, 0, 658317.812500 
0, 1, 603902.687500 

https://developer.apple.com/documentation/accelerate/1513264-cblas_sgemm?language=objc
https://developer.apple.com/documentation/accelerate/1513264-cblas_sgemm?language=objc


388                        MACHINE LEARNING: A QUANTITATIVE APPROACH

 

   

1, 0, 607938.625000 
1, 1, 564726.500000 

As is seen, cblas_sgemm is 6.27/0.08 = 78, 50.78/1.04 = 49, and 390/8.8 = 44 times faster than gemm 

implemented in YOLOv3 for 6464 , 128128  and  256256  matrices, respectively, which is very 

impressive. 

C.2.9 COCO TRAINING ON MAC OS BY TAKING ADVANTAGE OF APPLE’S 

ACCELERATE FRAMEWORK 

Given the huge benefit of using Apple‟s Accelerate framework, I was motivated to replace gemm with 

cblas_sgemm in YOLOv3. I made the following changes to gemm.c in YOLOv3‟s darknet directory: 

▪ Added  

#ifdef ACCEL 

#include <Accelerate/Accelerate.h> 

#endif 

▪ The gemm_cpu function now looks like this: 

void gemm_cpu(int TA, int TB, int M, int N, int K, float ALPHA,  
        float *A, int lda,  
        float *B, int ldb, 
        float BETA, 
        float *C, int ldc) 
{ 
    //printf("cpu: %d %d %d %d %d %f %d %d %f %d\n",TA, TB, M, N, K, ALPHA, lda, ldb, BETA, ldc); 
    // commented out for calling cblas_sgemm 
 
#ifdef ACCEL 
    if(!TA && !TB) { 
      cblas_sgemm(101, 111,111, M, N, K, ALPHA, A, lda, B, ldb, BETA, C, ldc); 
    } else if(TA && !TB) { 
  cblas_sgemm(101, 112,111, M, N, K, ALPHA, A, lda, B, ldb, BETA, C, ldc); 
    } else if (!TA && TB) { 
  cblas_sgemm(101, 111,112, M, N, K, ALPHA, A, lda, B, ldb, BETA, C, ldc); 
    } else { 
  cblas_sgemm(101, 112,112, M, N, K, ALPHA, A, lda, B, ldb, BETA, C, ldc); 
    } 
#else 
 int i, j; 
    for(i = 0; i < M; ++i) { 
        for(j = 0; j < N; ++j) { 
            C[i*ldc + j] *= BETA; 
        } 
    } 
    if(!TA && !TB) { 
        gemm_nn(M, N, K, ALPHA,A,lda, B, ldb,C,ldc); 
    } else if(TA && !TB) { 
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        gemm_tn(M, N, K, ALPHA,A,lda, B, ldb,C,ldc); 
    } else if (!TA && TB) { 
        gemm_nt(M, N, K, ALPHA,A,lda, B, ldb,C,ldc); 
    } else { 
        gemm_tt(M, N, K, ALPHA,A,lda, B, ldb,C,ldc); 
    } 
#endif 
} 

Then I added the following at the beginning of the Makefile in the darknet directory: 

ACCEL=1 

and after the CFLAG line: 

ifeq ($(ACCEL), 1)  
COMMON+= -DACCEL 
CFLAGS+= -DACCEL 
CFLAGS+= -framework ACCELERATE 
endif 

Then, I rebuilt YOLOv3 with the commands of “make clean” and “make.” These changes have made 

YOLOv3 10 - 20 times faster than before. For example, these are the output lines before replacing gemm 

with cblas_sgemm: 

2801: 6.420076, 6.379949 avg, 0.001000 rate, 3134.186031 seconds, 179264 images 
…… 

And these are the same iterations after replacing gemm with cblas_sgemm: 

2801: 5.855477, 5.855477 avg, 0.001000 rate, 152.833456 seconds, 179264 images 
…… 

In addition, the YOLOv3 is now able to use all 8 CPU cores on my machine, as indicated by the number 

“8” under Threads shown in Figure C.17 (a)  below. Figure C.17 (b) shows the new profile with 

YOLOv3 optimized with Apple‟s Accelerate framework. Compare with Figure C.15 to see how this 

optimization has reduced the CPU time spent on the gemm functions significantly. 

 

Figure C.17 (a) YOLOv3 optimized with Apple‟s Accelerate framework. 
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Figure C.17 (b) Profile with YOLOv3 optimized with Apple‟s Accelerate framework. 
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If you are interested in repeating what I did to speed up YOLOv3 on macOS, you can follow the steps I 

detailed above.  However, depending on what you have on your machine and how much experience you 

have on macOS, it could be easy or difficult. Even I myself encountered some difficulties when I was 

trying to port YOLOv3 from my newer MacBook Pro to an older MacBook Pro. Here are some practices 

you might want to keep in mind: 

▪ The cmake version might matter, so please use the latest cmake. I encountered many issues in 

building openCV on my older MacBook, which were resolved simply by upgrading cmake from 3.6.1 

to 3.11.4. On my newer MacBook Pro, I have cmake 3.10.2, which also works. 

▪ Install the latest llvm by executing the command of “brew install llvm.” The openMP is included in 

newer versions of llvm and does not require a separate flag like –fopenmp to enable omp. 

▪ The python version also matters. I have python3.6 on my newer MacBook and 3.7.0 on my older 

MacBook. I had significant difficulties while building opencv on my older MacBook, as described 

next. 

After successfully building openCV on my older MacBook, I got the following error when verifying the 

installation of openCV: 

henrys-MBP-2:build henryliu$ python3 
Python 3.6.5 (v3.6.5:f59c0932b4, Mar 28 2018, 05:52:31)  
[GCC 4.2.1 Compatible Apple LLVM 6.0 (clang-600.0.57)] on darwin 
Type "help", "copyright", "credits" or "license" for more information. 
 
>>> import cv2 
Traceback (most recent call last): 
  File "<stdin>", line 1, in <module> 
ModuleNotFoundError: No module named 'cv2' 

Apparently, python 3.7 on my machine did not seem to be able to find where openCV library was. The 

blog at https://www.codingforentrepreneurs.com/blog/install-opencv-3-for-python-on-mac/ helped me 

resolve the issue. 

First I figured out the PATH for my python 3.7 as follows: 

Python 3.7.0 (default, Jun 29 2018, 20:13:13)  
[Clang 9.1.0 (clang-902.0.39.2)] on darwin 
>>> import sys 
>>> print(sys.path) 
['', '/usr/local/Cellar/python/3.7.0/Frameworks/Python.framework/Versions/3.7/lib/python37.zip', 
'/usr/local/Cellar/python/3.7.0/Frameworks/Python.framework/Versions/3.7/lib/python3.7', 
'/usr/local/Cellar/python/3.7.0/Frameworks/Python.framework/Versions/3.7/lib/python3.7/lib-dynload', 
'/usr/local/lib/python3.7/site-packages'] 
>>> 

Then I checked the path of /usr/local/lib/python3.7/site-packages and found no openCV library there. 

The following command fixed the issue (all in one line) by creating a soft link to link the built 

cv2.cpython-36m-darwin.so to /usr/local/lib/python3.7/site-packages with an alias of 

cv2.so: 

https://www.codingforentrepreneurs.com/blog/install-opencv-3-for-python-on-mac/
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ln -s /usr/local/Cellar/opencv/3.4.1_2/lib/python3.6/site-packages/cv2.cpython-36m-darwin.so 
/usr/local/lib/python3.7/site-packages/cv2.so 

I observed that the YOLOv3 optimized on my MacBook Pro takes anywhere between 80 – 200 seconds 

per batch, depending on if there are any other jobs running on my machine. I compared the original and 

optimized YOLOv3 on my MacBook Pro again and got the following results: 

With ACCEL=1 
henryliu:darknet henryliu$ ./darknet  detector train cfg/coco.data cfg/yolov3.cfg darknet53.conv.74 
1: 862.024475, 862.024475 avg, 0.000000 rate, 109.445253 seconds, 64 images, 08-27-2018 15:26:12.000  
 
With ACCEL=0 
henryliu:darknet henryliu$ ./darknet  detector train cfg/coco.data cfg/yolov3.cfg darknet53.conv.74 
1: 1447.881836, 1447.881836 avg, 0.000000 rate, 2373.783949 seconds, 64 images, 08-27-2018 16:08:49.000  

This represents a 2373/105=22.6x speed-up. You can try it out on your machine and it will be very 

impressive. For your reference, refer to Figures C.18 - 20 for how COCO training performed on my 

MacBook Pro with Apple‟s Accelerate framework enabled as described above. 

 

Figure C.17 YOLOv3 running on another MacBook Pro with all 8 CPU cores in use. 

 

Figure C.18 COCO detector training with YOLOv3 optimized on macOS:  current loss and average loss 

evolved with iterations from 1 up to 22756 with a batch size of 64 and subdivision of 16. The average 

loss started from over 1000 during the first 100 iterations and settled quickly down to around 8.0 at 

iteration 1000, which slowly progressed to 5.0 – 6.0 at the end of 22785 iterations. 

1

10

100

1000

10000

1 10 100 1000 10000 100000

Lo
ss

 (
lo

g 
sc

al
e

) 

Batch # (iteration) (log scale) 

COCO dataset detector training with YOLOv3 on macOS (initial part) 

avg_loss

curr_loss



APPENDIX C CNN EXAMPLES WITH CAFFE ,  YOLOV3 AND PYTORCH                393

 

  

 

Figure C.19 COCO detector training with YOLOv3 optimized on macOS:  current loss and average loss 

evolved with iterations from 500209 up to 502209 with a batch size of 64 and subdivision of 16. The 

losses settled down around 3.0. 

 

Figure C.20 COCO detector training with YOLOv3 optimized on macOS: training performance in terms 

of seconds per batch, with a batch size of 64 and subdivision of 16. 

C.2.10 HOW YOLOV3 TRAINING IS KICKED OFF 

It is interesting to explore how YOLOv3 training is kicked off exactly with the COCO dataset as an 

example. Most of the logistics is entailed in the train_detector function in detector.c. This function is 

shown in Listing C.28. It is a bit lengthy, with the main logic coded in the while-loop from lines 71-156. 
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The loop condition is that the current batch is smaller than the max_batches parameter specified in the 

yolov3.cfg file introduced earlier. If you have basic knowledge about C and CNN models as introduced 

in the main text, it‟s not hard to understand this piece of code, which is left as an exercise for those who 

are interested in such details. 

Listing C.28 train_detector function (in examples/detetcor.c) 

15 void train_detector(char *datacfg, char *cfgfile, char *weightfile, int 
*gpus, int ngpus, int clear) 

16 { 
17     list *options = read_data_cfg(datacfg); 
18     char *train_images = option_find_str(options, "train",  

"data/train.list"); 

19     char *backup_directory = option_find_str(options, "backup",  
"/backup/"); 

20  
21     srand(time(0)); 
22     char *base = basecfg(cfgfile); 
23     printf("%s\n", base); 
24     float avg_loss = -1; 
25     network **nets = calloc(ngpus, sizeof(network)); 
26  
27     srand(time(0)); 
28     int seed = rand(); 
29     int i; 
30     for(i = 0; i < ngpus; ++i){ 
31         srand(seed); 
32 #ifdef GPU 
33         cuda_set_device(gpus[i]); 
34 #endif 
35         nets[i] = load_network(cfgfile, weightfile, clear); 
36         nets[i]->learning_rate *= ngpus; 
37     } 
38     srand(time(0)); 
39     network *net = nets[0]; 
40  
41     int imgs = net->batch * net->subdivisions * ngpus; 
42     printf("Learning Rate: %g, Momentum: %g, Decay: %g\n",  

net->learning_rate, net->momentum, net->decay); 

43     data train, buffer; 
44  
45     layer l = net->layers[net->n - 1]; 
46  
47     int classes = l.classes; 
48     float jitter = l.jitter; 
49  
50     list *plist = get_paths(train_images); 
51     //int N = plist->size; 
52     char **paths = (char **)list_to_array(plist); 
53  
54     load_args args = get_base_args(net); 



APPENDIX C CNN EXAMPLES WITH CAFFE ,  YOLOV3 AND PYTORCH                395

 

  

55     args.coords = l.coords; 
56     args.paths = paths; 
57     args.n = imgs; 
58     args.m = plist->size; 
59     args.classes = classes; 
60     args.jitter = jitter; 
61     args.num_boxes = l.max_boxes; 
62     args.d = &buffer; 
63     args.type = DETECTION_DATA; 
64     //args.type = INSTANCE_DATA; 
65     args.threads = 64; 
66  
67     pthread_t load_thread = load_data(args); 
68     double time; 
69     int count = 0; 
70     //while(i*imgs < N*120){ 
71     while(get_current_batch(net) < net->max_batches){ 
72         if(l.random && count++%10 == 0){ 
73             printf("Resizing\n"); 
74             int dim = (rand() % 10 + 10) * 32; 
75             if (get_current_batch(net)+200 > net->max_batches) dim = 608; 
76             //int dim = (rand() % 4 + 16) * 32; 
77             printf("%d\n", dim); 
78             args.w = dim; 
79             args.h = dim; 
80  
81             pthread_join(load_thread, 0); 
82             train = buffer; 
83             free_data(train); 
84             load_thread = load_data(args); 
85  
86             #pragma omp parallel for 
87             for(i = 0; i < ngpus; ++i){ 
88                 resize_network(nets[i], dim, dim); 
89             } 
90             net = nets[0]; 
91         } 
92         time=what_time_is_it_now(); 
93         pthread_join(load_thread, 0); 
94         train = buffer; 
95         load_thread = load_data(args); 
96  
97         /* 
98            int k; 
99            for(k = 0; k < l.max_boxes; ++k){ 
100            box b = float_to_box(train.y.vals[10] + 1 + k*5); 
101            if(!b.x) break; 
102            printf("loaded: %f %f %f %f\n", b.x, b.y, b.w, b.h); 
103            } 
104          */ 
105         /* 
106            int zz; 
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107            for(zz = 0; zz < train.X.cols; ++zz){ 
108            image im = float_to_image(net->w, net->h, 3, train.X.vals[zz]); 
109            int k; 
110            for(k = 0; k < l.max_boxes; ++k){ 
111            box b = float_to_box(train.y.vals[zz] + k*5, 1); 
112            printf("%f %f %f %f\n", b.x, b.y, b.w, b.h); 
113            draw_bbox(im, b, 1, 1,0,0); 
114            } 
115            show_image(im, "truth11"); 
116            cvWaitKey(0); 
117            save_image(im, "truth11"); 
118            } 
119          */ 
120  
121         printf("Loaded: %lf seconds\n", what_time_is_it_now()-time); 
122  
123         time=what_time_is_it_now(); 
124         float loss = 0; 
125 #ifdef GPU 
126         if(ngpus == 1){ 
127             loss = train_network(net, train); 
128         } else { 
129             loss = train_networks(nets, ngpus, train, 4); 
130         } 
131 #else 
132         loss = train_network(net, train); 
133 #endif 
134         if (avg_loss < 0) avg_loss = loss; 
135         avg_loss = avg_loss*.9 + loss*.1; 
136  
137         i = get_current_batch(net); 
138         printf("%ld: %f, %f avg, %f rate, %lf seconds, %d images\n",  

get_current_batch(net), loss, avg_loss, get_current_rate(net),  

what_time_is_it_now()-time, i*imgs); 

139         if(i%100==0){ 
140 #ifdef GPU 
141             if(ngpus != 1) sync_nets(nets, ngpus, 0); 
142 #endif 
143             char buff[256]; 
144             sprintf(buff, "%s/%s.backup", backup_directory, base); 
145             save_weights(net, buff); 
146         } 
147         if(i%10000==0 || (i < 1000 && i%100 == 0)){ 
148 #ifdef GPU 
149             if(ngpus != 1) sync_nets(nets, ngpus, 0); 
150 #endif 
151             char buff[256]; 
152             sprintf(buff, "%s/%s_%d.weights", backup_directory, base, i); 
153             save_weights(net, buff); 
154         } 
155         free_data(train); 
156     } 
157 #ifdef GPU 
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158     if(ngpus != 1) sync_nets(nets, ngpus, 0); 
159 #endif 
160     char buff[256]; 
161     sprintf(buff, "%s/%s_final.weights", backup_directory, base); 
162     save_weights(net, buff); 
163 } 

C.2.11 OBJECT DETECTION WITH UNDER-TRAINED YOLOV3 

If you use the pre-trained weights named yolov3.weights demonstrated in §C2.3, you would find that 

the loss arrived at after 500200 batches should be in the range of 2.5 – 3. Assuming that we can achieve a 

100 seconds per batch or 0.64 images/sec training speed on macOS with optimized YOLOv3, 

completing the entire training of 500200 iterations would take 500200 * 100 / 3600 /24 = 579 days or 1 

year and 7 months! Obviously, we cannot run it for so long, so let‟s look at what kind of results we could 

get with a significantly under-trained YOLOv3. Some of the results are shown next. 

C.2.11.1 BOUNDING BOX DETECTION WITH YOLOV3 AFTER TRAINED ~500K ITERATIONS ON MACOS 

First of all, let‟s repeat the results with a well-trained YOLOv3, which reached a loss of ~2.5 after 

500300 iterations, as shown by the last output line below: 

500300: 2.530798, 2.527618 avg, 0.000010 rate, 260.651288 seconds, 32019200 images, 08-20-2018 16:16:45.000 

Next, I tried the dog.jpg file and horses.jpg file, which are shown below in Figure C.21, respectively. 

Note that the detection now takes under one second with the optimized YOLOv3 on macOS vs ~8s with 

the original YOLOv3 compiled on macOS. Also note that the detections exceeded above 90% accuracy 

in both cases. Keep in mind that above 90% confidence is a very high confidence score. 

henryliu:darknet henryliu$ ./darknet_mac_accel detect cfg/yolov3.cfg backup/yolov3_500300.weights 
data/dog.jpg 
…… 
data/dog.jpg: Predicted in 0.909023 seconds. 
bicycle: 99% 
truck: 94% 
dog: 99% 
 
henryliu:darknet henryliu$ ./darknet_mac_accel detect cfg/yolov3.cfg backup/yolov3_500300.weights 
data/horses.jpg 
data/horses.jpg: Predicted in 0.902591 seconds. 
horse: 98% 
horse: 97% 
horse: 92% 
horse: 90% 

C.2.11.2 BOUNDING BOX DETECTION WITH YOLOV3 TRAINED FOR 10000 ITERATIONS ON MACOS 

Now, let‟s get back to a significantly under-trained model, which was trained with 10000 iterations only 

or 50x less trained than the previous case of being trained to the completion of 500k iterations. As shown 

in Figure C.22, with 10000 batches of training, the dog was detected as a cat, and one horse was detected 

as a sheep, although the bicycle, the automobile and two horses have been detected correctly. 
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henryliu:darknet henryliu$ ./darknet_mac_accel detect cfg/yolov3.cfg backup/yolov3_10000.weights data/dog.jpg 
data/dog.jpg: Predicted in 0.879459 seconds. 
cat: 71% 
car: 56% 
truck: 72% 
bicycle: 65% 
 
henryliu:darknet henryliu$ ./darknet_mac_accel detect cfg/yolov3.cfg backup/yolov3_10000.weights 
data/horses.jpg 
data/horses.jpg: Predicted in 0.873518 seconds. 
sheep: 55% 
horse: 72% 
horse: 71% 
 

    

Figure C.21 Object detection test with YOLOv3 after fully trained with over 500k iterations, using the 

dog.jpg and horses.jpg image. All objects are detected correctly. 

   

Figure C.22 Object detection test with YOLOv3 after trained for 10k iterations only, using: (a) the 

dog.jpg image, with the dog being mis-detected as a cat, and (b) using the horses.jpg image, with a horse 

mis-detected as a sheep. 
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C.2.11.3 BOUNDING BOX DETECTION WITH YOLOV3 TRAINED FOR 20000 ITERATIONS ON MACOS 

What if we use a model trained with 20k iterations, or twice more iterations than the previous case? As 

shown in Figure C.23, with 20000 batches of training, the dog was not detected, and two horses were 

detected as cows. 

henryliu:darknet henryliu$ ./darknet_mac_accel detect cfg/yolov3.cfg backup/yolov3_20000.weights data/dog.jpg 
data/dog.jpg: Predicted in 0.848138 seconds. 
bicycle: 76% 
car: 58% 
 
henryliu:darknet henryliu$ ./darknet_mac_accel detect cfg/yolov3.cfg backup/yolov3_20000.weights 
data/horses.jpg 
Loading weights from backup/yolov3_20000.weights...Done! 
data/horses.jpg: Predicted in 0.922860 seconds. 
cow: 69% 
cow: 62% 
horse: 55% 

C.2.11.4 BOUNDING BOX DETECTION WITH YOLOV3 TRAINED FOR 1000 ITERATIONS ON MACOS 

What if the COCO model were trained with only 1000 batches? Figure C.24 shows that no bounding 

boxes were detected with the dog.jpg image and a “person” was actually detected out of a horse! These 

examples show why a model needs to be thoroughly trained. 

henryliu:darknet henryliu$ ./darknet_mac_accel detect cfg/yolov3.cfg backup/yolov3_1000.weights data/dog.jpg 
Loading weights from backup/yolov3_1000.weights...Done! 
data/dog.jpg: Predicted in 1.346573 seconds. 
 
henryliu:darknet henryliu$ ./darknet_mac_accel detect cfg/yolov3.cfg backup/yolov3_900.weights data/horses.jpg 
Loading weights from backup/yolov3_900.weights...Done! 
data/horses.jpg: Predicted in 1.237775 seconds. 
person: 65% 

  

Figure C.23 Object detection test with YOLOv3 after trained for 20k iterations, using: (a) the dog.jpg 

image, with the dog not detected, and (b) the horses.jpg image, with two horses mis-detected as cows. 
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Figure C.24 Object detection test with YOLOv3 after trained for 1k iterations only, using: (a) the 

dog.jpg image, with no bounding boxes detected at all, and (b) the horses.jpg image, strangely enough 

that it actually mis-detected a “person” out of a horse. 

C.3 IMAGE PROCESSING BASICS 

In order to better understand how YOLOv3 works in particular and how deep learning CNN models 

work in general, it‟s beneficial to have a basic understanding of how software processes images in 

general. In this section, I‟ll show you an example in C of how OpenCV processes images, and then a 

more advanced image processing example in Java using the Marvin image processing framework. Such 

knowledge would enhance your understanding of YOLOv3 in particular and CNN models in general. 

Let‟s start with OpenCV first. 

C.3.1 HOW OPENCV PROCESSES IMAGES IN C 

First of all, this is how the website  https://opencv.org/  introduces OpenCV: 

OpenCV (Open Source Computer Vision Library) is released under a BSD license and hence it’s free for 

both academic and commercial use. It has C++, Python and Java interfaces and supports Windows, 

Linux, Mac OS, iOS and Android. OpenCV was designed for computational efficiency and with a strong 

focus on real-time applications. Written in optimized C/C++, the library can take advantage of multi-

core processing. Enabled with OpenCL, it can take advantage of the hardware acceleration of the 

underlying heterogeneous compute platform. 

Adopted all around the world, OpenCV has more than 47 thousand people of user community and 

estimated number of downloads exceeding 14 million. Usage ranges from interactive art, to mines 

inspection, stitching maps on the web or through advanced robotics. 

I have emphasized some highlights in bold type in the above citation, which gives you a quick glance of 

OpenCV‟s strengths and popularity.  

Listing C.29 shows a C program that reads and displays the eagle image as shown in Figure C.25 that 

comes with the YOLOv3 distribution. If you have a basic understanding of how a C program works, it 

https://opencv.org/
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should be easy for you to understand how this simple C program works. I suggest that you build and run 

this program by executing the commands given as follows, respectively.  

gcc -o z.out `pkg-config --libs opencv` `pkg-config --cflags opencv`  opencv_test.c –v 
./z.out /Users/henryliu/mspc/devs/ws_cpp/ml01/images/eagle.jpg 

Then, verify that you get the same results as shown in Figure C.25. 

Listing C.29 opencv_test.c program 

1 include <stdlib.h> 

2 #include <stdio.h> 

3 #include <math.h> 

4 //These two lines cannot be recognized by Eclipse CDT 

5 //#include <cv.h> 

6 //#include <highgui.h> 

7 //use absolute path 

8 //#include "/usr/local/include/opencv/cv.h" 

9 //#include "/usr/local/include/opencv/highgui.h" 

10 //Use this include in place of the above two 
11 #include "/usr/local/include/opencv2/core/core_c.h" 
12 // resolve segmentation 11 runtime error 
13 #include "/usr/local/include/opencv2/imgcodecs/imgcodecs_c.h" 
14  
15 // show an IplImage with a namew for the window at x, y offsets relative 

to the upper left corner 

16 void show_image (IplImage* img, char *window_name, int offset_x, int 
offset_y) { 

17    cvNamedWindow(window_name, 1); 

18    cvMoveWindow(window_name, offset_x, offset_y); 

19    cvShowImage(window_name, img ); 

20 } 
21  
22 int main(int argc, char *argv[]) 
23 { 
24   IplImage* img = 0; 
25  
26   char *image_file =  

       "/Users/henryliu/mspc/devs/ws_cpp/ml01/images/eagle.jpg"; 

27  
28   // load the image with "-1" - as-is 
29   Img = cvLoadImage(image_file, -1); 
30   if(!img){ 
31     printf("Failed to load image file: %s\n",image_file); 
32     exit(0); 
33   } 
34  
35   int height, width, widthStep, channels; 
36   uchar *data; 
37  
38   // get the image data 
39   height    = img->height; 
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40   width     = img->width; 
41   widthStep = img->widthStep; 
42   channels  = img->nChannels; 
43   data      = (uchar *)img->imageData; 
44   printf("Image properties: (widthStep x width x height) = %dx%dx%d with  

%d channels\n", widthStep, width, height, channels); 

45   printf("On macOS: locate images from a Terminal icon on the Dock  
...\n"); 

46   printf("To exit: click ^c or any key after clicking the Terminal icon on  
the Dock \n"); 

47  
48   show_image(img, "Original", 0, 0); 
49   int i,j,k; 
50  
51   // invert the image 
52   for(i = 0; i < height; i++) 
53    for(j = 0; j < width; j++) 

54     for(k = 0; k < channels; k++) 

55            data[i * widthStep + j * channels + k] = 255 - data[i *  

widthStep + j * channels + k]; 

56  
57   show_image(img, "Inverted", width / 2, height / 2); 
58  
59   // wait for a key or ^c and then release the image 
60   cvWaitKey(0); 
61   cvReleaseImage(&img ); 
62   return 0; 
63 } 

Now, focus on the two blocks shown from lines 35 – 43 and lines 52 – 55 in Listing C.29, respectively. 

The first block of code shows that an image has properties such as height, width, widthStep, 

nChannels and a data array. The height and width properties define the number of pixels, the 

widthStep property defines the number of data points for each row,  the nChannels property defines the 

number of channels, while the data property define a 1D array that represents all pixels, including color 

information for each pixel. For example, running the above program would give the following output: 

henryliu:src henryliu$ ./z.out /Users/henryliu/mspc/devs/ws_cpp/ml01/images/eagle.jpg 
Image properties: (widthStep x width x height) = 2320x773x512 with 3 channels 
On macOS: locate images from a Terminal icon on the Dock ... 
To exit: click ^c or any key after clicking the Terminal icon on the Dock 

which shows that the image of eagle.jpg has 773512 pixels and 3 channels of (red, green, blue).  The 

widthStep parameter has a value of 2320, since each row has 773 pixels, each of which has three values 

for the colors of red, green and blue, i.e., each pixel is defined with 3 values.  

The second block from lines 52 - 55 shows how the data array is indexed: The variables i, j and k 

represent row, column and channel, respectively. This is exactly how an image is represented in 

YOLOv3, as YOLOv3 uses OpenCV as one of its image libraries. 

However, image matrices cannot be used directly for convolutional computations. You may recall a 

function named im2col_cpu, as shown in Figures C. 15 and C. 17(b). This function converts image 
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matrices to column matrices to facilitate convolutional computations. Next, I‟ll show you an example to 

help you understand how this function works. 

 

Figure C.25 An image read and displayed with OpenCV in C in its original and inverted forms. 

C3.2. CONVERTING IMAGE MATRICES TO COLUMN MATRICES WITH THE IM2COL 

FUNCTION 

First, visit the article available at https://www.mathworks.com/help/images/ref/im2col.html to become 

familiar with what the im2col function is about.  That article has a very good example as shown in 

Figure C.26, illustrating how the function im2col works. Keeping sliding the matrix A with 22 sub-

matrices and arranging them in column would result in the matrix B as shown there. For example, take 

the first upper left 22 sub-matrix of the matrix A and put it as the first column of matrix B, which 

changes the column-wise elements of {0, 0.2667, 0.0667, 0.3333} in A into the first column of B. Then, 

slide down one row for the second sub matrix of {0.2667, 0.5333, 0.3333, 0.6000} and place it in B as 

the second column, and so on. Since A is a 44 matrix, we would have a 4(4-1) (4-1)=49 column 

matrix B with a stride of 1. 

 

Figure C.26 A 4x4 matrix is converted to a 4x9 matrix with mathworks’ im2col. 

https://www.mathworks.com/help/images/ref/im2col.html
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Now let‟s explore how this is done in YOLOv3. In fact, YOLOv3 has a function named im2col_cpu in 

im2col.c that does that kind of matrix conversion when an image is loaded and before being fed to a 

convolutional layer. Listing C.30 shows how this function is coded in C, together with a driver program I 

wrote for testing it, as explained next. 

First, let‟s start with the driver function named mathworks(). Note that line 34 defines the parameters of 

channels, height, width, ksize and stride, where ksize is the convolution kernel size. Next, the 

pad parameter is computed with the formula of pad = (ksize – 1) / 2, which is derived from the 

following formula that if stride = 1 and the pad parameter is chosen that way, the condition nout = nin 

will always hold: 

     
                 

      
                           

Apparently, if stride > 1, then the number of outputs will be reduced roughly proportionally.  

Next, line 36 defines a 44 input matrix using the mathworks example mentioned previously.  Line 37 

computes the number of the elements for the column matrix to be obtained, and line 38 allocates the 

memory for the column matrix named b_col. Line 39 calls the im2col_cpu function, using those 

parameters given. The remaining lines are just for printing the column matrix and free its memory at the 

end. Now if you compile and run this program with the instructions given in the im2col_test.c 

program available from this book‟s download website, you should get the following output: 

mathworks calling im2col_cpu ... 
height_col = 3, width_col = 3 
 
Input 4x4 matrix (manually added here for convenience) 
0.0000, 0.0667, 0.1333, 0.2000, 
0.2667,  0.3333, 0.4000, 0.4667, 
0.5333, 0.6000, 0.6667, 0.7333, 
0.8000, 0.8667, 0.9333, 1.0000 

 
Column matrix (3x3x4=36)
0.000000, 
0.066700, 
0.133300, 
0.266700, 

0.333300, 
0.400000, 
0.533300, 
0.600000, 

0.666700, 
0.066700, 
0.133300, 
0.200000, 

0.333300, 
0.400000, 
0.466700, 
0.600000, 

0.666700, 
0.733300, 
0.266700, 
0.333300, 

0.400000, 
0.533300, 
0.600000, 
0.666700, 

0.800000, 
0.866700, 
0.933300, 
0.333300, 

0.400000, 
0.466700, 
0.600000, 
0.666700, 

0.733300, 
0.866700, 
0.933300, 
1.000000

Note the differences between this column matrix and the one from mathworks discussed above. First, 

each sub-matrix is traversed in row-major fashion rather than in column-major fashion; secondly, in 

machine learning, when we specify a 22 kernel, the associated sub-matrix is actually a 33 matrix, as a 

4 grid cell would need 3 connection points on each side. Other than those differences, this column matrix 

and the previous column matrix are essentially the same. 

Now let‟s check the im2col_cpu function and see exactly how it works. First, lines 16 through 18 

compute the dimensions for the height, width and total number of channels of the column matrix. Note 

that the total number of channels is equal to the number of image colors multiplied by the kernel size 

squared. Next, note that the 3 embedded for-loops follow the sequence of channels  heights  width 

top-to-bottom. Lines 20-22 calculate the offsets for the channel, height and width loop variables, 

based on the expanded channels and kernel size. Finally, line 39 maps the original image array to the 
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column matrix array, with the help of another function named im2col_get_pixel shown from lines 3-9. 

Keep in mind that with zero-padding, pad rows/columns are applied on each side of the four sides of an 

image, so pad is subtracted from the row and col variables as shown by lines 5 and 6. Line 7 shows 

exactly how zero-padding is applied. 

This is how the im2col function is implemented in YOLOv3 and I hope it helps you gain insight into 

how images are turned into column matrices so that they will be more treatable numerically. There is 

also a function named col2im, which does the opposite, but we will not elaborate it here.  

Next, I‟ll show you an example in Java to demonstrate how images can be manipulated interestingly. 

Listing C.30 YOLOv3’s im2col function 

1 #include "im2col.h" 

2 #include <stdio.h> 

3 float im2col_get_pixel(float *im, int height, int width, int channels, 

int row, int col, int channel, int pad) 

4 { 

5     row -= pad; 

6     col -= pad; 

 

7     if (row < 0 || col < 0 ||= row >= height || col >= width) return 0; 

8     return im[col + width*(row + height*channel)]; 

9 } 

 

10 //From Berkeley Vision's Caffe! 
11 //https://github.com/BVLC/caffe/blob/master/LICENSE 
12 void im2col_cpu(float* data_im, channels, int height, int width, 
13      int ksize,  int stride, int pad, float* data_col)  
14 { 
15     int c,h,w; 
16     int height_col = (height + 2*pad - ksize) / stride + 1; 
17     int width_col = (width + 2*pad - ksize) / stride + 1; 
18     int channels_col = channels * ksize * ksize; 
19     for (c = 0; c < channels_col; ++c) { 
20         int w_offset = c % ksize; 
21         int h_offset = (c / ksize) % ksize; 
22         int c_im = c / ksize / ksize; 
23         for (h = 0; h < height_col; ++h) { 
24             for (w = 0; w < width_col; ++w) { 
25                 int im_row = h_offset + h * stride; 
26                 int im_col = w_offset + w * stride; 
27                 int col_index = (c * height_col + h) * width_col + w; 
28                 data_col[col_index] = im2col_get_pixel(data_im, height, 

                     width, channels, im_row, im_col, c_im, pad); 

29             } 
30         } 
31     } 
32 } 
33 void mathworks (){ 
34  int channels = 1, height = 4, width = 4, ksize = 2, stride = 1; 
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35  int pad = (ksize - 1) / 2; 

36  float a[16] = {0, 0.0667, 0.1333, 0.2000, 

         0.2667, 0.3333, 0.4000, 0.4667, 

         0.5333, 0.6000, 0.6667, 0.7333, 

         0.8000, 0.8667, 0.9333, 1.0000}; 

37  int num_elements = channels * ksize * ksize * height * width; 

38  float *b_col = calloc(num_elements, sizeof(float)); 

 

39  im2col_cpu(a, channels, width, height, ksize, stride, pad, b_col); 

 

40  int i, j, k; 

41  printf("\nmathworks calling im2col_cpu ...\n"); 

42   int height_col = (height + 2*pad - ksize) / stride + 1; 
43   int width_col = (width + 2*pad - ksize) / stride + 1; 
44   printf("height_col = %d, width_col = %d\n", height_col, width_col); 
45   int channels_col = channels * ksize * ksize; 
46   int c, w, h; 
47   for (c = 0; c < channels_col; ++c) { 
48       int w_offset = c % ksize; 
49       int h_offset = (c / ksize) % ksize; 
50       int c_im = c / ksize / ksize; 
51       for (h = 0; h < height_col; ++h) { 
52           for (w = 0; w < width_col; ++w) { 
53               int im_row = h_offset + h * stride; 
54               int im_col = w_offset + w * stride; 
55               int col_index = (c * height_col + h) * width_col + w; 
56               printf("%f, ", b_col[col_index]);             } 
57          } 
58      } 
59     free(b_col); 
60 } 

C.3.3 A MORE ADVANCED IMAGE PROCESSING  EXAMPLE IN JAVA 

Listing C.31 shows how the same eagle.jpg image can be manipulated to yield different effects.  

Figure C.27 shows the original image and three images processed with 3 Marvin plug-ins of prewitt, 

errorDiffusion and emboss, respectively.  Since it uses the Marvin Java image processing library, the 

program needs to be compiled with marvin_1.5.5.jar. Once you built the program, you could run and 

get processed images as shown in Figure C.27. 

Listing C.31 JavaImageProcessing program 

1 import java.awt.GridLayout; 

2 import javax.swing.JFrame; 

3  

4 import marvin.color.MarvinColorModelConverter; 

5 import marvin.gui.MarvinImagePanel; 

6 import marvin.image.MarvinImage; 

7 import marvin.io.MarvinImageIO; 

8 import marvin.plugin.MarvinImagePlugin; 

9 import marvin.util.MarvinPluginLoader; 
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10  
11 public class JavaImageProcessing extends JFrame{ 
12  
13  // Marvin plug-ins for image processing 

14   MarvinImagePlugin prewitt = 
MarvinPluginLoader.loadImagePlugin("org.marvinproject.image.edge.prewitt")

; 

15     MarvinImagePlugin errorDiffusion = 
MarvinPluginLoader.loadImagePlugin("org.marvinproject.image.halftone.error

Diffusion"); 

16     MarvinImagePlugin emboss = 
MarvinPluginLoader.loadImagePlugin("org.marvinproject.image.color.emboss")

; 

17  
18     public JavaImageProcessing(){ 
19         super("Java Image Processing Examples"); 
20  
21         // Layout 
22         setLayout(new GridLayout(2,2)); 
23  
24         // Load image 
25         MarvinImage img_input =  

MarvinImageIO.loadImage("./images/eagle.jpg"); 

26  
27         int w = img_input.getWidth(); 
28         int h = img_input.getHeight(); 
29  
30         MarvinImage img_prewitt = new MarvinImage(w, h); 
31         MarvinImage img_errorDiffusion = new MarvinImage(w, h); 
32         MarvinImage img_emboss = new MarvinImage(w, h); 
33  
34         //Processing plug-ins 
35         errorDiffusion.process(img_input, img_prewitt); 
36         prewitt.process(img_input, img_errorDiffusion); 
37         emboss.process(img_input, img_emboss); 
38                              

       MarvinImageIO.saveImage(img_errorDiffusion,"./images/eagle4.jpeg"); 

39         // Set panels (top left, top right, bottom left, bottom right) 
40         addPanel(img_input); 
41         addPanel(img_prewitt); 
42         addPanel(img_errorDiffusion); 
43         addPanel(img_emboss); 
44  
45         traceShape("./images/eagle.jpg", "eagle"); 
46          
47         setSize(1200,800); 
48         setVisible(true); 
49     } 
50  
51     public void addPanel(MarvinImage image){ 
52         MarvinImagePanel imagePanel = new MarvinImagePanel(); 
53         imagePanel.setImage(image); 
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54         add(imagePanel); 
55     } 
56  
57     public static void main(String[] args) { 
58         new JavaImageProcessing().setDefaultCloseOperation  

(JFrame.EXIT_ON_CLOSE); 

59     } 
60      
61     // http://jaypthakkar.blogspot.com/2014/ 
62  public static void traceShape(String imageFile, String imageName) { 

63   // Load Plug-in 

64   MarvinImagePlugin boundary = 

MarvinPluginLoader.loadImagePlugin("org.marvinproject.image.morphological.

boundary"); 

65  
66   // Load image 

67   MarvinImage image = MarvinImageIO.loadImage(imageFile); 

68  
69   // Binarize 145 better than 145, 100 better than 145 

70   MarvinImage binImage = MarvinColorModelConverter.rgbToBinary(image,  

100); 

71   MarvinImageIO.saveImage(binImage, "./images/" + imageName +  

"_bin.png"); 

72  
73   // morphological boundary 

74   boundary.process(binImage.clone(), binImage); 

75   MarvinImageIO.saveImage(binImage, "./images/" + imageName +  

"_boudary.png"); 

76  } 

77 } 
 

 

Figure C.27 An image read and processed with Marvin in Java in three different forms. 
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Note that the above Java program also calls a traceShape function, which yields binarized and  

morphological boundary images as shown in Figure C.28. This extra example is provided just to show 

you that images can be pre-processed in many different forms for machine learning training purposes. 

   

Figure C.28 The same eagle image in binary and morphological boundary forms. 

C.3.4 RGB VERSUS HSV IMAGE FORMATS 

There are two commonly used image formats, RGB and HSV, that can be interchanged with each other. 

The RGB format is simple, which is simply a mixing of the three different colors of red, green and blue. 

The HSV format is defined with three different attributes of hue or tint, saturation or amount of gray 

from completely gray to full color, and value or brightness from completely white to completely black, 

as shown in Figure C.29 known as the HSV color model. As is seen, hue is like the spectrum of color 

from red  yellow  green  cyan  blue  magenta,  respectively. In fact, Adobe Photoshop calls 

HSV as HSB with value replaced with brightness. On macOS, you can open an image with Preview   

Tools  Adjust Color…, as shown in Figure C.30, to check out the effects of hue, saturation and value, 

although we have tint for hue, saturation, but no brightness, which is more of a combo of Exposure 

(making all pixels lighter or darker), Contrast (making whites whiter or blacks blacker), Highlights 

(making white pixels whiter in lighter areas),  Shadows(making darker pixels darker in darker areas), 

which are all located in the first section of the Preview Tools drop-down menu. YOLOv3 allows us to 

define hue, exposure, and saturation, with hue being an additive operation and other two multiplicative 

operations, defined in the image.c file. 

C.4 THE ART AND SCIENCE OF DEEP LEARNING PERFORMANCE 

Apparently, large configuration deep learning training requires GPUs, which means using NVidia GPUs 

most of the time. However, GPUs may not be easily available or affordable for individual AI/ML 

researchers. Still, knowing what performance one can expect with training large DL models on NVidia 

GPUs helps us understand how far we are - if we only have access to lower-end GPUs or CPUs on an 

optimized platform like macOS. For this purpose, I‟d like to share some of the benchmarks conducted by 

NVidia from https://www.nvidia.com/content/g/pdfs/DGX-Station-WP.pdf so that we could get an 

assessment of the art and science of DL performance provided by an industrial leader like NVidia in the 

GPU industry. 

https://www.nvidia.com/content/g/pdfs/DGX-Station-WP.pdf
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Figure C.29 The HSV color model. 

 

Figure C.30 Adjust color from Preview – Tools menu on macOS. 

The above NVidia white paper is interesting to read in general. While I leave it up to you, I‟d like to 

share two charts out of that white paper, one is 4x Tesla P100 vs 4x Tesla V100, as shown in Figure 

C.31, and the other is with 1-4 V100 GPUs for scalability, as shown in Figure C.32. As you see from 

Figure C.31, the ResNet-50 benchmark achieved ~900 images/second with the 4xP100 configuration and 
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~3000 images per second with the 4xV100 configuration. If the batch size is 64 images, it means that 

each batch or iteration took ~70 milliseconds only with the 4xP100 configuration or 7ms with the 

4xV100 configuration, although such performance metric varies from model to model. On the other 

hand, Figure C.32 shows that a 4xP100 configuration slightly outperforms a 1xV100 configuration with 

~900 images/second versus ~800 images/second. It is clear that newer GPUs may help speed up DL 

training significantly. 

 

Figure C.31 NVidia 4x Tesla P100 (Pascal) versus DGX Station with 4x Tesla V100 (Volta). The y-axis 

represents the score in terms of images per second trained with the ResNet-50 training configuration with 

mixed precision FP16 and FP32. 

 

Figure C.32 NVidia 4x Tesla V100 (Pascal) scalability with 1, 2 and 4 GPUs. The y-axis represents the 

score in terms of images per second trained with the ResNet-50 training configuration with mixed 

precision FP16 and FP32. 
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C.5 TRAINING YOLOV3 ON GPUS 

In this section, I share with you how I trained YOLOv3 with COCO on a 4xP100 NVidia GPU machine 

instance with Ubuntu 16.04 and NVidia cuda-9.1, after many trials to find out exactly what works and 

what doesn‟t. This may help save you a lot of time if you want to try the same. Then, I‟ll show you how 

to build YOLOv3 on Ubuntu 18.04 with CUDA-9.1 on a VM that has no GPU card. 

C5.1 YOLOV3 COCO TRAINING ON GPUS 

My situation was unique that I did not have a standalone GPU-empowered machine and the target 

machine was not a dev environment in the sense that I could only make a darknet binary and move it 

with COCO data to run it on the target machine with Ubuntu-16.04-cuda-9.1. It actually worked out well 

eventually and here is the first part of the output from a single GPU instance with the same COCO-

YOLOv3 training runs I described in the previous sections: 

1, 590.249084, 590.249084 avg, 0.000000 rate, 6.607559 seconds, 128 images 
…… 
200, 79.368683, 80.681160 avg, 0.000002 rate, 4.380903 seconds, 12800 images 
…… 
309, 51.029556, 53.454048 avg, 0.000009 rate, 7.997087 seconds, 19776 images 

As you see, the same COCO training with YOLOv3 took 4-8 seconds per iteration on the single GPU 

machine instance I used, versus 80-200 seconds per iteration on my macOS with Apple‟s Accelerate 

framework enabled, which took up to 3200 seconds per iteration with YOLOv3‟s own gemm function. 

You can calculate how long it would take to go through the entire 520200 batches  in each case. 

I also ran the COCO training with 4 GPUs and 8 GPUs, respectively. This is how I kicked off a multi-

GPU training, e.g., on a 4-GPU machine instance: 

nohup ./darknet_gpu_omp detector train cfg/coco.data cfg/yolov3.cfg backup/yolov3.backup -gpus 0,1,2,3 
1>coco_exp1_2d1_0927_0.txt 2>&1 & 

Note from the above command on how it is prefixed with the nohup directive and how the 4 GPUs are 

specified. Besides, note the following: 

▪ In the function train_detector in detector.c,  there is a for-loop as shown in Listing C.32, 

which initializes the nets array for distributing training on multiple GPUs. Note at line 37 that the 

input learning rate is multiplied by the number of GPUs. This means that for an input learning rate of 

0.001, each GPU would train with a learning rate of  0.004. To account for this, I specified the input 

learning rate as 0.001/ngpus, where ngpus is the number of GPUs to train on the GPU instance. 

However, eventually, I figured out how to choose the input learning rate for the much more time-

consuming, entire end-to-end training: Try a few runs with increasing learning rates until you see it 

starts to diverge, as there is no formula for computing optimal learning rate. 

▪ I kept the same max_batches and steps settings as originally specified as follows, without dividing 

them by the number of GPUs: 

learning_rate=0.00025 
burn_in=1000 
max_batches = 520200 
policy=steps 
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steps=400000,450000 

Listing C.32 nets array initialized with multi-GPUs in YOLOv3 

31     for(i = 0; i < ngpus; ++i){ 
32         srand(seed); 
33 #ifdef GPU 
34         cuda_set_device(gpus[i]); 
35 #endif 
36         nets[i] = load_network(cfgfile, weightfile, clear); 
37         nets[i]->learning_rate *= ngpus; 
38     } 

Finally, the output with multi-GPU training jumps by a number of (ngpus  1)  4, as shown below that 

from batch 520199 to 520212, 12 batches or lines were jumped when my 4 GPU run was finishing up :  

…… 
520196: 3.128988, 2.981058 avg, 0.000010 rate, 8.054236 seconds, 133170176 images, 09-28-2018 02:00:34.000 , 6424 count, 1135.644165 epochs 
520197: 2.959709, 2.978923 avg, 0.000010 rate, 7.526659 seconds, 133170432 images, 09-28-2018 02:00:41.000 , 6425 count, 1135.646240 epochs 
520198: 3.189289, 2.999960 avg, 0.000010 rate, 7.594982 seconds, 133170688 images, 09-28-2018 02:00:49.000 , 6426 count, 1135.648438 epochs 
520199: 3.212610, 3.021225 avg, 0.000010 rate, 7.330811 seconds, 133170944 images, 09-28-2018 02:00:56.000 , 6427 count, 1135.650635 epochs 
Syncing  ... Saving weights to backup/yolov3_final.weights 
 Done! 
520212: 3.123556, 3.031458 avg, 0.000010 rate, 7.966230 seconds, 133174272 images, 09-28-2018 02:01:04.000 , 6428 count, 1135.679077 epochs 

In the above output, the time stamp, count, and epochs terms were added by me in the source code for 

me to track the progress of training more easily. I added a save_interval net parameter so that a 

weights-save is performed whenever the condition count%save_interval equals 0 is met, where the 

count variable is always initialized to 0 every time when a new run is started. This 4 GPU run took 

about 7- 8 days total for 520200 batches or ~1136 epochs. Figure C.33 shows what were achieved with 

this run at the end, using the dog and horses images. It seems that the dog image had a “tvmonitor” 

object identified erroneously, most likely due to an over-trained model, resulting in the familiar issue of 

overfitting. 

  

Figure C.33 Verification of the 4-GPU COCO training at the end of 520200 batches. The dog image had 

object:confidence scores of tvmonitor:67%, dog:98%, truck:83%, bicycle:99%, while the horses image 

had 99%, 97%, 95% and 85% for those four horses, respectively. 
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Next I share with you how I compiled YOLOv3 darknet binary to run on a Ubuntu 16.04-cuda-9.1 

machine instance under the circumstance that I had no NVidia GPU empowered machine to compile 

YOLOv3 and the target machine does not support compiling YOLOV3 with cuda-9.1. 

The procedure that worked out includes: 

▪ Creating a Ubuntu-18.04 VM 

▪ Installing cuda-9.1 

▪ Making YOLOv3 on the Ubuntu-18.04-cuda-9.1 VM 

Let‟s start with how to create a Ubuntu-18.04 VM first. 

C.5.2 CREATING A UBUNTU-18.04 VM 

I used VMware Fusion, which costs $79.99 as of this writing,  on my MacBook to create a Ubuntu-18.04 

VM. I started with creating a Ubuntu 16.04 instead of 18.04, but had huge difficulties with the guest 

session login loop problem, and the issue was avoided only after I chose Ubuntu 18.04.  

First download ubuntu-18.04.1-desktop-amd64.iso online. Use the desktop version instead of server 

version as we need the UI. Then on the VMware Fusion menu bar, select File > New > Create a custom 

virtual machine > Continue. Then select Linux > Ubuntu 64-bit > Continue. Select Create a new virtual 

disk > Continue. Choose Customize Settings. Enter a name like Ubuntu-18.04.vmwarevm > Save. 

Now on the Settings panel, click Processors & Memory. Choose 2 or 4 processor cores and set memory 

to 8096 MB. Click Show All to go back to Settings. Click Hard Disk and change to 80 GB and Save. 

Now click on CD/DVD Drive and make sure you select the image you downloaded online as shown in 

Figure C.34 below. This tells Fusion where to find the Ubuntu image to create a VM from it. Now close 

the dialog and click the big triangle to start up your Ubuntu VM. 

 

Figure C.34 Creating a Ubuntu-18.04 desktop VM. 

Click Install Ubuntu. Select English > Continue > Continue > Install Now > Continue. Select your time 

zone > Continue. Enter your name, your computer‟s name, username and password and then Continue. 

The installation may take up to 10 minutes. Then, click Restart Now.  

Now if it says “Please remove the installation medium, then reboot.”, just Select Virtual Machine > 

Restart from the Fusion menu bar. You may need to press “Ctrl + Cmd” to get your mouse pointer back. 

Now click through a few initial dialogs and select Upgrade Later, and you should have your Ubuntu VM 

up and running now as shown in Figure C.35 below. Now open up a Terminal and execute the following 

commands: 

$sudo apt-get install open-vm-tools-desktop 
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$sudo apt install net-tools 
$sudo reboot 

Now you can directly drag-drop files between your macOS host and Ubuntu VM. 

 

Note: Tips with creating a Ubuntu VM on macOS using VMware Fusion: (a) If you lose your mouse 

pointer on the screen, press the “Do you want to enable Siri” button near the power button if you have a 

touch bar, or press “Ctrl + Cmd” key combo; and (b) After enabling Sharing between your Ubuntu VM 

and macOS host, you can change to /mnt/hgfs/ to find your shared directories, but drag-and-drop is the 

easiest way to move files between the two systems. 

 

 

Figure C.35 A Ubuntu-18.04 desktop VM created with VMware Fusion on macOS. 

C.5.3 INSTALLING CUDA-9.1 

First, download NVidia cuda-9.1 base and patch 3 from https://developer.nvidia.com/cuda-91-download-

archive?target_os=Linux&target_arch=x86_64&target_distro=Ubuntu&target_version=1604&target_typ

e=runfilelocal. Then install the base as follows: 

$chmod +x cuda_9.1.85_387.26_linux.run 
$./cuda_9.1.85_387.26_linux.run --override 
 
Do you accept the previously read EULA? 
accept/decline/quit: accept 
 
You are attempting to install on an unsupported configuration. Do you wish to continue? 

https://developer.nvidia.com/cuda-91-download-archive?target_os=Linux&target_arch=x86_64&target_distro=Ubuntu&target_version=1604&target_type=runfilelocal
https://developer.nvidia.com/cuda-91-download-archive?target_os=Linux&target_arch=x86_64&target_distro=Ubuntu&target_version=1604&target_type=runfilelocal
https://developer.nvidia.com/cuda-91-download-archive?target_os=Linux&target_arch=x86_64&target_distro=Ubuntu&target_version=1604&target_type=runfilelocal
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(y)es/(n)o [ default is no ]: y 
 
Install NVIDIA Accelerated Graphics Driver for Linux-x86_64 387.26? 
(y)es/(n)o/(q)uit: n 
 
Install the CUDA 9.1 Toolkit? 
(y)es/(n)o/(q)uit: y 
 
Enter Toolkit Location 
 [ default is /usr/local/cuda-9.1 ]:  
 
/usr/local/cuda-9.1 is not writable. 
Do you wish to run the installation with 'sudo'? 
(y)es/(n)o: y 
 
Please enter your password:  
Do you want to install a symbolic link at /usr/local/cuda? 
(y)es/(n)o/(q)uit: y 
 
Install the CUDA 9.1 Samples? 
(y)es/(n)o/(q)uit: n 
 
Installing the CUDA Toolkit in /usr/local/cuda-9.1 ... 
 
=========== 
= Summary = 
=========== 
 
Driver:   Not Selected 
Toolkit:  Installed in /usr/local/cuda-9.1 
Samples:  Not Selected 

Then install Patch 3 as follows: 

$chmod +x cuda_9.1.85.3_linux.run 
$sudo ./cuda_9.1.85.3_linux.run 
Do you accept the previously read EULA? 
accept/decline/quit:  accept 
 
Enter CUDA Toolkit installation directory 
 [ default is /usr/local/cuda-9.1 ]:  
 
Installation complete! 
Installation directory: /usr/local/cuda-9.1 

Now add the following to the ~/.bashrc file and then source it: 

export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:/usr/local/lib:/usr/local/cuda-9.1/lib64 
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export PATH=$PATH:/usr/local/cuda-9.1/bin 

Finally install gcc-5 as making YOLOv3 requires this particular gcc version, as follows: 

$sudo apt-get install gcc-5 g++-5 g++-5-multilib gfortran-5 
$sudo rm /usr/bin/gcc 
$sudo ln -s gcc-5 /usr/bin/gcc 

Now check the nvcc and gcc version and you should get the following outputs: 

$ nvcc --version 
nvcc: NVIDIA (R) Cuda compiler driver 
Copyright (c) 2005-2017 NVIDIA Corporation 
Built on Fri_Nov__3_21:07:56_CDT_2017 
Cuda compilation tools, release 9.1, V9.1.85 
$ gcc --version 
gcc (Ubuntu 5.5.0-12ubuntu1) 5.5.0 20171010 
Copyright (C) 2015 Free Software Foundation, Inc. 

You are ready to make YOLOv3 on your Ubuntu-18.04 VM with NVidia cuda9.1 now. 

C.5.4 MAKING YOLOV3 ON THE UBUNTU-18.04-CUDA-9.1 VM 

In order to make YOLOv3 on your Ubuntu VM, first install/update the make utility as follows: 

$sudo apt install make 
$sudo apt install make-guile 

Now copy the darknet download to your Ubuntu VM. You only need the following directories and files: 

examples 
include 
Makefile 
src 

Make sure that you have the following settings in your Makefile: 

GPU=1 
CUDNN=0 
OPENCV=0 
ACCEL=0 
OPENMP=0 
DEBUG=0 
 
ifeq ($(GPU), 1)  
COMMON+= -DGPU -I/usr/local/cuda-9.1/include/ 
CFLAGS+= -DGPU 
LDFLAGS+= -L/usr/local/cuda-9.1/lib64 -lcuda -lcudart -lcublas -lcurand 
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endif 

Now after executing “make clean” and “make” commands and if you get the following error: 

/usr/bin/ld: cannot find -lcuda 
collect2: error: ld returned 1 exit status 
Makefile:90: recipe for target 'libdarknet.so' failed 
make: *** [libdarknet.so] Error 1 

Then, remove “-lcuda” flag for linking the cuda library from the LDFLAGS setting in your Makefile 

and re-make. The generated darknet executable file is your YOLOv3 binary built on Ubuntu 18.04 with 

cuda-9.1. You can test it with the CIFAR small configuration on a remote GPU-empowered machine 

instance and it should work. Here is the output I tried: 

/cifar# ./darknet_ubtn_gpu classifier train cfg/cifar.data cfg/cifar_small.cfg 
cifar_small 
1 
layer     filters    size              input                output 
    0 conv     32  3 x 3 / 1    28 x  28 x   3   ->    28 x  28 x  32  0.001 BFLOPs 
    1 max          2 x 2 / 2    28 x  28 x  32   ->    14 x  14 x  32 
    2 conv     64  3 x 3 / 1    14 x  14 x  32   ->    14 x  14 x  64  0.007 BFLOPs 
    3 max          2 x 2 / 2    14 x  14 x  64   ->     7 x   7 x  64 
    4 conv    128  3 x 3 / 1     7 x   7 x  64   ->     7 x   7 x 128  0.007 BFLOPs 
    5 conv     10  1 x 1 / 1     7 x   7 x 128   ->     7 x   7 x  10  0.000 BFLOPs 
    6 avg                        7 x   7 x  10   ->    10 
    7 softmax                                          10 
    8 cost                                             10 
Learning Rate: 0.1, Momentum: 0.9, Decay: 0.0005 
50000 
32 32 
1, 0.003: 1.642243, 1.642243 avg, 0.099920 rate, 1.051387 seconds, 128 images, 08-31-2018 18:45:03.000  
2, 0.005: 1.586244, 1.636643 avg, 0.099840 rate, 0.036392 seconds, 256 images, 08-31-2018 18:45:03.000  
…… 
9, 0.023: 1.522952, 1.553780 avg, 0.099282 rate, 0.033507 seconds, 1152 images, 08-31-2018 18:45:03.000  
10, 0.026: 1.503915, 1.548793 avg, 0.099202 rate, 0.033441 seconds, 1280 images, 08-31-2018 18:45:03.000 

As you see, it took 33 ms per batch or iteration on a 4xP100/4x12GB GPU machine instance, versus 

710ms or 0.71s per iteration on my MacBook Pro built-as-is or versus 300ms or 0.3s per iteration on my 

MacBook Pro built with Apple‟s Accelerate framework. The speed-up is about 10x if we compare the 

GPU version of YOLOv3 with the version of YOLOv3 optimized on macOS. For the COCO training 

model, the speed up is between 80/8 = 10x (at least) to 200/4 = 50x (at best), though. 

C5.5 INSTALLING OPENCV ON UBUNTU-18.04 

If you have a Ubuntu machine and you want to install OpenCV on it, you can follow the instructions 

from https://www.learnopencv.com/install-opencv3-on-ubuntu/. However, if you end up with no 

cv2*.so file created, here are some tips based on my real experience: 

https://www.learnopencv.com/install-opencv3-on-ubuntu/
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▪ Make sure your cmake is up-to-date. 

▪ Make sure you use gcc-5 and g++-5. For example, with g++-5, this is how you would install it: 

$sudo apt-get install g++-5 
$sudo ln -s g++-5 /usr/bin/g++ 

▪ Make sure that you have python3 and numpy properly installed, as shown below: 

$sudo apt-get install python-dev python-pip python3-dev python3-pip 
$sudo -H pip3 install -U pip numpy 

▪ Use a proper cmake command, e.g., this is what I used (all on one line): 

cmake -D CMAKE_BUILD_TYPE=RELEASE -D CMAKE_INSTALL_PREFIX=/usr/local -D 
OPENCV_EXTRA_MODULES_PATH=/home/henry/opencv/opencv_contrib-3.4.0/modules -D 
BUILD_opencv_python2=OFF -D BUILD_opencv_python3=ON -D INSTALL_PYTHON_EXAMPLES=OFF -D 
INSTALL_C_EXAMPLES=OFF -D BUILD_EXAMPLES=OFF -D WITH_CUDA=OFF .. 

If it works out properly, you should see something similar to the following at the end of executing the 

above cmake command: 

…… 
[100%] Built target opencv_perf_stitching 
[100%] Linking CXX shared module ../../lib/python3/cv2.cpython-36m-x86_64-linux-gnu.so 
[100%] Built target opencv_python3 
henry@ubuntu-18-04:~/opencv/opencv-3.4.0/build$ 

Finally, create a soft link as follows: 

$ln -s /usr/local/lib/python3.6/dist-packages/cv2.cpython-36m-x86_64-linux-gnu.so cv2.so 

However, it could be challenging to use OpenCV with YOLOv3 when your GPU-enabled Ubuntu 

machine is a remote container that does not have X11 built-in. 

C.6 PYTORCH 

PyTorch is one of the most popular deep learning frameworks for building dynamic neural networks in 

Python. In this section, I‟ll help you get a taste of how it can be easily installed on your machine and how 

easy it is to get it up and running with the simplest yet representative MNIST example you have been 

very familiar with at this point, given so much you have gone through with this text. You can learn more 

about it by visiting its website at https://pytorch.org/.  

To get started, visit the PyTorch‟s website and decide how you can get it installed on your machine. For 

example, I made the following selections as shown in Figure C.36. As you see, you can get the 

installation command by choosing proper OS, Package Manager, Python version and CUDA, based on 

what you have on your machine. 

https://pytorch.org/
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Figure C.36 Decide how to get PyTorch installed on your machine. 

In my case, I selected MacOS, pip, Python 3.6 and None for CUDA, as I do not have GPUs on my 

macOS or Linux VM. Then, I simply executed the following command on my machine to have PyTorch 

installed on my macOS machine: 

$ pip3 install torch torchvision 

Then, I downloaded the PyTorch examples from https://github.com/pytorch/examples and expanded it to 

a directory on my machine. To try out the MNIST example, I changed to the mnist directory and 

executed the following command, with some of the outputs shown following it: 

henryliu:mnist henryliu$ time python3 main.py 
Train Epoch: 1 [0/60000 (0%)] Loss: 2.376790 
Train Epoch: 1 [640/60000 (1%)] Loss: 2.332813 
… 
Train Epoch: 1 [59520/60000 (99%)] Loss: 0.539000 
Test set: Average loss: 0.2079, Accuracy: 9416/10000 (94%) 
Train Epoch: 2 [0/60000 (0%)] Loss: 0.362165 
… 
Train Epoch: 2 [59520/60000 (99%)] Loss: 0.337212 
Test set: Average loss: 0.1263, Accuracy: 9628/10000 (96%) 
Train Epoch: 3 [0/60000 (0%)] Loss: 0.379173 
… 
Train Epoch: 3 [59520/60000 (99%)] Loss: 0.351524 
Test set: Average loss: 0.0981, Accuracy: 9703/10000 (97%) 
Train Epoch: 4 [0/60000 (0%)] Loss: 0.066369 
… 

https://github.com/pytorch/examples
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Train Epoch: 4 [59520/60000 (99%)] Loss: 0.180767 
Test set: Average loss: 0.0834, Accuracy: 9742/10000 (97%) 
Train Epoch: 5 [0/60000 (0%)] Loss: 0.344416 
… 
Train Epoch: 5 [59520/60000 (99%)] Loss: 0.206268 
Test set: Average loss: 0.0772, Accuracy: 9765/10000 (98%) 
Train Epoch: 6 [0/60000 (0%)] Loss: 0.136501 
… 
Train Epoch: 6 [59520/60000 (99%)] Loss: 0.109242 
Test set: Average loss: 0.0661, Accuracy: 9797/10000 (98%) 
Train Epoch: 7 [0/60000 (0%)] Loss: 0.132029 
… 
Train Epoch: 7 [59520/60000 (99%)] Loss: 0.436856 
Test set: Average loss: 0.0606, Accuracy: 9813/10000 (98%) 
Train Epoch: 8 [0/60000 (0%)] Loss: 0.277644 
… 
Train Epoch: 8 [59520/60000 (99%)] Loss: 0.092792 
Test set: Average loss: 0.0605, Accuracy: 9812/10000 (98%) 
Train Epoch: 9 [0/60000 (0%)] Loss: 0.169455 
… 
Train Epoch: 9 [59520/60000 (99%)] Loss: 0.102595 
Test set: Average loss: 0.0539, Accuracy: 9835/10000 (98%) 
Train Epoch: 10 [0/60000 (0%)] Loss: 0.242028 
… 
Train Epoch: 10 [59520/60000 (99%)] Loss: 0.133413 
Test set: Average loss: 0.0483, Accuracy: 9856/10000 (99%) 
real 3m54.478s 
user 3m17.471s 
sys 1m4.820s 

As you see, it took about 4 minutes for 10 epochs  to reach a test accuracy of 99%. 

If you are curious about how the PyTorch code looks like, Listing C.33 shows the main.py script for the 

above MNIST example. As you see, behind the scene a package named torch  does all the work. You 

can spend about ten minutes and find out exactly how PyTorch works at https://pytorch.org/about/, 

which explains all magic behind this great deep learning framework. 

Listing C.33 main.py code the PyTorch MNIST example 

1 from __future__ import print_function 

2 import argparse 

3 import torch 

4 import torch.nn as nn 

5 import torch.nn.functional as F 

6 import torch.optim as optim 

7 from torchvision import datasets, transforms 

8  

9 class Net(nn.Module): 

10     def __init__(self): 
11         super(Net, self).__init__() 

https://pytorch.org/about/


422                        MACHINE LEARNING: A QUANTITATIVE APPROACH

 

   

12         self.conv1 = nn.Conv2d(1, 10, kernel_size=5) 
13         self.conv2 = nn.Conv2d(10, 20, kernel_size=5) 
14         self.conv2_drop = nn.Dropout2d() 
15         self.fc1 = nn.Linear(320, 50) 
16         self.fc2 = nn.Linear(50, 10) 
17  
18     def forward(self, x): 
19         x = F.relu(F.max_pool2d(self.conv1(x), 2)) 
20         x = F.relu(F.max_pool2d(self.conv2_drop(self.conv2(x)), 2)) 
21         x = x.view(-1, 320) 
22         x = F.relu(self.fc1(x)) 
23         x = F.dropout(x, training=self.training) 
24         x = self.fc2(x) 
25         return F.log_softmax(x, dim=1) 
26  
27 def train(args, model, device, train_loader, optimizer, epoch): 
28     model.train() 
29     for batch_idx, (data, target) in enumerate(train_loader): 
30         data, target = data.to(device), target.to(device) 
31         optimizer.zero_grad() 
32         output = model(data) 
33         loss = F.nll_loss(output, target) 
34         loss.backward() 
35         optimizer.step() 
36         if batch_idx % args.log_interval == 0: 
37             print('Train Epoch: {} [{}/{} ({:.0f}%)]\tLoss:  

{:.6f}'.format( 

38                 epoch, batch_idx * len(data), len(train_loader.dataset), 
39                 100. * batch_idx / len(train_loader), loss.item())) 
40  
41 def test(args, model, device, test_loader): 
42     model.eval() 
43     test_loss = 0 
44     correct = 0 
45     with torch.no_grad(): 
46         for data, target in test_loader: 
47             data, target = data.to(device), target.to(device) 
48             output = model(data) 
49             test_loss += F.nll_loss(output, target,  

size_average=False).item() # sum up batch loss 

50             pred = output.max(1, keepdim=True)[1] # get the index of the  
max log-probability 

51             correct += pred.eq(target.view_as(pred)).sum().item() 
52  
53     test_loss /= len(test_loader.dataset) 
54     print('\nTest set: Average loss: {:.4f}, Accuracy: {}/{}  

({:.0f}%)\n'.format( 

55         test_loss, correct, len(test_loader.dataset), 
56         100. * correct / len(test_loader.dataset))) 
57  
58 def main(): 
59     # Training settings 
60     parser = argparse.ArgumentParser(description='PyTorch MNIST Example') 



APPENDIX C CNN EXAMPLES WITH CAFFE ,  YOLOV3 AND PYTORCH                423

 

  

61     parser.add_argument('--batch-size', type=int, default=64, metavar='N', 
62                         help='input batch size for training (default:  

64)') 

63     parser.add_argument('--test-batch-size', type=int, default=1000,  
metavar='N', 

64                         help='input batch size for testing (default:  
1000)') 

65     parser.add_argument('--epochs', type=int, default=10, metavar='N', 
66                         help='number of epochs to train (default: 10)') 
67     parser.add_argument('--lr', type=float, default=0.01, metavar='LR', 
68                         help='learning rate (default: 0.01)') 
69     parser.add_argument('--momentum', type=float, default=0.5,  

metavar='M', 

70                         help='SGD momentum (default: 0.5)') 
71     parser.add_argument('--no-cuda', action='store_true', default=False, 
72                         help='disables CUDA training') 
73     parser.add_argument('--seed', type=int, default=1, metavar='S', 
74                         help='random seed (default: 1)') 
75     parser.add_argument('--log-interval', type=int, default=10,  

metavar='N', help='how many batches to wait before logging training 

status') 

76     args = parser.parse_args() 
77     use_cuda = not args.no_cuda and torch.cuda.is_available() 
78  
79     torch.manual_seed(args.seed) 
80  
81     device = torch.device("cuda" if use_cuda else "cpu") 
82  
83     kwargs = {'num_workers': 1, 'pin_memory': True} if use_cuda else {} 
84     train_loader = torch.utils.data.DataLoader( 
85         datasets.MNIST('../data', train=True, download=True, 
86              transform=transforms.Compose([transforms.ToTensor(), 
87               transforms.Normalize((0.1307,), (0.3081,))])), 
88         batch_size=args.batch_size, shuffle=True, **kwargs) 
89     test_loader = torch.utils.data.DataLoader( 
90         datasets.MNIST('../data', train=False,    

transform=transforms.Compose([ 

91                 transforms.ToTensor(), 
92                 transforms.Normalize((0.1307,), (0.3081,)) 
93                        ])), 
94         batch_size=args.test_batch_size, shuffle=True, **kwargs) 
95  
96     model = Net().to(device) 
97     optimizer = optim.SGD(model.parameters(), lr=args.lr,  

momentum=args.momentum) 

98  
99     for epoch in range(1, args.epochs + 1): 
100         train(args, model, device, train_loader, optimizer, epoch) 
101         test(args, model, device, test_loader) 
102  
103 if __name__ == '__main__': 
104     main() 


