

Java Concurrent Programming:
A Quantitative Approach

Henry H. Liu

P PerfMath

Copyright @2015 by Henry H. Liu. All rights reserved

The right of Henry H. Liu to be identified as author of this book has been asserted by him in accordance

with the Copyright, Designs and Patens Act 1988.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form or

by any means, electronic, mechanical, photocopying, recording, scanning, or otherwise, except as

permitted under Section 107 or 108 of the 1976 United States Copyright Act, without either the prior

written permission of the Publisher, or authorization through payment of the appropriate per-copy fee to

the Copyright Clearance Center, Inc., 222 Rosewood Drive, Danvers, MA 01923, (978) 750-8400, fax

(978) 750-4470, or on the web at www.copyright.com.

The contents in this book have been included for their instructional value. They have been tested with

care but are not guaranteed for any particular purpose. Neither the publisher nor author shall be liable for

any loss of profit or any other commercial damages, including but not limited to special, incidental,

consequential, or other damages.

ISBN-13: 978-1514849873

ISBN-10: 1514849879

10 9 8 7 6 5 4 3 2 1

09022015

http://www.copyright.com/

To My Family

Table of Contents

LIST OF PROGRAMS .. XI

TABLE OF FIGURES .. XIX

PREFACE ... XXIII

WHY THIS BOOK .. XXIII

WHOM THIS BOOK IS FOR ... XXIV

HOW THIS BOOK IS ORGANIZED ... XXIV

SOFTWARE AND HARDWARE .. XXV

HOW TO USE THIS BOOK .. XXVI

TYPOGRAPHIC CONVENTIONS ... XXVI

HOW TO REACH THE AUTHOR .. XXVI

THE BOOK’S WEB SITE .. XXVI

ACKNOWLEDGEMENTS .. XXVII

 MULTITHREADED PROGRAMMING IN JAVA ... 1 1

1.1 PERSPECTIVES OF CONCURRENT PROGRAMMING ... 1

1.2 A HISTORICAL OVERVIEW OF CONCURRENT ALGORITHMS .. 4

II CONTENTS

1.2.1 Dekker’s Algorithm .. 4

1.2.2 Peterson’s Algorithm ... 5

1.2.3 The Bakery Algorithm .. 6

1.3 EVOLUTION OF JAVA CONCURRENCY SUPPORT ... 9

1.4 JAVA THREADS ... 10

1.4.1 Potential Issues with Java Concurrency ... 10

1.4.2 All Possible States for a Java Thread ... 11

1.4.3 Livelock, Starvation and Deadlock ... 12

1.5 CREATING A THREAD ... 13

1.5.1 Implements Runnable .. 19

1.5.2 Extends Thread .. 21

1.6 SYNCHRONIZATION ... 23

1.6.1 Synchronized Methods .. 23

1.6.2 Synchronized Blocks .. 26

1.7 INTER-THREAD COMMUNICATIONS .. 27

1.7.1 Busy Wait / Busy Spin .. 28

1.7.2 A Simple Buffer Accessed by a Single Thread .. 28

1.7.3 The Simple Buffer Accessed by Two Threads: Busy-Wait with no Conditional Check (OOB)30

1.7.4 The Simple Buffer Accessed by Two Threads: Busy-Wait with Conditional Check but no
Synchronization (Livelock) .. 32

1.7.5 Detecting Locking Issues.. 33

1.7.6 The Simple Buffer Accessed by Two Threads: Busy-Wait with Conditional Check and
Synchronization (Starvation) .. 34

1.7.7 Guarded Blocks with Asynchronous Waiting ... 37

1.7.8 Turning the SimpleBuffer Class into a First-In-First-Out Queue-Like Data Structure........... 40

1.8 DEADLOCK .. 42

1.8.1 A Deadlock Example with a Parent and a Child Thread Calling the callMe Method of two
Non-Threaded Objects .. 42

1.8.2 Diagnosing Deadlocks Using the jvisualvm Tool ... 45

CONTENTS III

1.9 SUSPENDING, RESUMING, AND STOPPING THREADS ... 48

1.10 THE JAVA MEMORY MODEL ... 49

1.11 THE BRIDGE EXAMPLE ... 49

1.12 SUMMARY .. 49

1.13 EXERCISES... 51

 JAVA THREAD EXECUTORSERVICE FRAMEWORK .. 53 2

2.1 THE CALLABLE AND FUTURE INTERFACES... 54

2.2 THE EXECUTOR INTERFACE ... 55

2.2.1 Executor .. 55

2.2.2 ExecutorService ... 55

2.2.3 ScheduledExecutorService .. 56

2.3 THE THREAD POOL CLASSES ... 57

2.3.1 The RunnableFuture interface and the FutureTask class .. 57

2.3.2 AbstractExecutorService ... 59

2.3.3 ThreadPoolExecutor .. 60

2.3.4 ForkJoinPool .. 64

2.3.5 ScheduledThreadPoolExecutor ... 64

2.4 THE EXECUTORS UTILITY CLASS ... 66

2.4.1 The DefaultThreadFactory Inner Class .. 68

2.4.2 The newSingleThreadExecutor Method .. 69

2.4.3 The newFixedThreadPool Method .. 69

2.4.4 The newCachedThreadPool method ... 70

2.5 SOME EXECUTORSERVICE EXAMPLES ... 70

2.5.1 The Method execute(Runnable) does not Return a Result .. 71

2.5.2 The Method submit (Runnable) Returns a Future Object (Status) 72

2.5.3 The Method submit(Callable) Returns a Future Object (Result) 73

2.5.4 The Method invokeAny (Callables) Succeeds if Any One Task Succeeds 76

2.5.5 The Method invokeAll (Callables) Succeeds if All Callables Succeed 78

IV CONTENTS

2.6 SUMMARY... 79

2.7 EXERCISES ... 80

 THE JAVA COLLECTIONS FRAMEWORK ... 83 3

3.1 COLLECTIONS OVERVIEW ... 83

3.2 THE COLLECTION INTERFACES.. 85

3.2.1 The Iterable and Iterator Interfaces .. 85

3.2.2 The Collection Interface ... 87

3.2.3 The Set Interface ... 88

3.2.4 The SortedSet Interface ... 88

3.2.5 The NavigableSet Interface ... 89

3.2.6 The List Interface ... 90

3.2.7 The ListIterator Interface ... 91

3.2.8 The Queue Interface .. 92

3.2.9 The Deque Interface .. 93

3.3 THE SET COLLECTION CLASSES... 94

3.3.1 The AbstractSet Class .. 95

3.3.2 The HashSet Class .. 96

3.3.3 The LinkedHashSet Class ... 99

3.3.4 The TreeSet Class ... 100

3.4 THE LIST COLLECTION CLASSES .. 103

3.4.1 The AbstractList Class .. 104

3.4.2 The RandomAccess Interface .. 105

3.4.3 The ArrayList Class... 105

3.4.4 The AbstractSequentialList Class ... 109

3.4.5 The LinkedList Class ... 110

3.4.6 ArrayList versus LinkedList... 116

3.5 THE QUEUE COLLECTION CLASSES .. 117

3.5.1 The ArrayDeque Class .. 117

CONTENTS V

3.5.2 The AbstractQueue Class .. 122

3.5.3 The PriorityQueue Class .. 123

3.6 THE MAP INTERFACES ... 126

3.6.1 The Map Interface .. 127

3.6.2 The SortedMap Interface .. 129

3.6.3 The NavigableMap Interface .. 129

3.7 THE MAP CLASSES ... 131

3.7.1 The AbstractMap Class ... 131

3.7.2 The HashMap Class ... 132

3.7.3 The LinkedHashMap Class .. 137

3.7.4 The TreeMap Class .. 141

3.7.5 The IdentityHashMap Class .. 144

3.7.6 The WeakHashMap Class ... 144

3.8 THE ALGORITHMS APPLIED TO COLLECTIONS ... 145

3.8.1 The Algorithms Applicable to Collections ... 147

3.8.2 The Algorithms Applicable to Sets .. 149

3.8.3 The Algorithms Applicable to Lists .. 150

3.8.4 The Algorithms Applicable to Queues ... 153

3.8.5 The Algorithms Applicable to Maps .. 155

3.8.6 The emptyXxxx and singletonXxxx Algorithms ... 157

3.9 THE ARRAYS CLASS ... 159

3.10 LEGACY COLLECTION CLASSES ... 160

3.11 SUMMARY .. 161

3.12 EXERCISES... 162

 ATOMIC OPERATIONS .. 163 4

4.1 THE NATIVE UNSAFE CLASS.. 165

4.2 ATOMICINTEGER .. 167

4.2.1 Implementation .. 167

VI CONTENTS

4.2.2 An Example .. 169

4.3 ATOMICINTEGERARRAY ... 171

4.4 OTHER ATOMIC CLASSES .. 175

4.5 SUMMARY... 176

4.6 EXERCISES ... 176

 LOCKS ... 177 5

5.1 THE JAVA LOCKS ... 178

5.1.1 The Lock Interface ... 179

5.1.2 The ReentrantLock Class .. 180

5.1.3 An Example .. 185

5.2 THE JAVA READWRITELOCKS .. 187

5.2.1 The ReadWriteLock Interface .. 187

5.2.2 The ReentrantReadWriteLock Class .. 187

5.2.3 An Example .. 192

5.3 THE CONDITION INTERFACE .. 194

5.4 ABSTRACT QUEUED SYNCHRONIZERS .. 199

5.4.1 The AbstractOwnableSynchronizer ... 199

5.4.2 The AbstractQueuedSynchronizer ... 200

5.4.3 The AbstractQueuedLongSynchronizer ... 207

5.5 SUMMARY... 207

5.6 EXERCISES ... 208

 SYNCHRONIZERS .. 209 6

6.1 SEMAPHORE .. 210

6.1.1 Semaphore Implementation .. 210

6.1.2 An Example of Using a Binary Semaphore .. 215

6.1.3 A Buffer Synchronized with Semaphores ... 217

6.2 CYCLICBARRIER .. 220

6.2.1 CyclicBarrier Implementation .. 220

CONTENTS VII

6.2.2 An Example of Using a CyclicBarrier ... 223

6.3 COUNTDOWNLATCH .. 225

6.3.1 CountDownLatch Implementation .. 225

6.3.2 An Example of Using a CountDownLatch.. 227

6.4 EXCHANGER .. 229

6.4.1 Exchanger Implementation ... 230

6.4.2 An Example of Using an Exchanger .. 232

6.5 PHASER .. 235

6.5.1 An Overview of Phaser Implementation ... 235

6.5.2 An Example of Using a Phaser .. 236

6.6 SUMMARY .. 238

6.7 EXERCISES... 239

 SYNCHRONIZED COLLECTIONS .. 241 7

7.1 ARRAYBLOCKING, SYNCHRONOUS, DELAY, AND PRIORITYBLOCKING QUEUES .. 242

7.1.1 The BlockingQueue Interface .. 242

7.1.2 ArrayBlockingQueue ... 243

7.1.3 SynchronousQueue ... 249

7.1.4 DelayQueue .. 253

7.1.5 PriorityBlockingQueue .. 258

7.2 CONCURRENT MAPS, QUEUES AND SET.. 262

7.2.1 ConcurrentHashMap ... 262

7.2.2 ConcurrentLinkedQueue ... 269

7.2.3 ConcurrentLinkedDeque.. 274

7.2.4 ConcurrentSkipListMap ... 279

7.2.5 ConcurrentSkipListSet ... 289

7.3 LINKEDBLOCKING AND TRANSFER QUEUES .. 295

7.3.1 LinkedBlockingQueue .. 295

7.3.2 LinkedBlockingDeque .. 301

VIII CONTENTS

7.3.3 LinkedTransferQueue .. 308

7.4 COPYONWRITE ARRAYLIST AND ARRAYSET ... 313

7.4.1 CopyOnWriteArrayList ... 313

7.4.2 CopyOnWriteArraySet ... 319

7.5 SUMMARY... 320

7.6 EXERCISES ... 321

 PARALLEL PROGRAMMING USING THE FORK-JOIN FRAMEWORK .. 323 8

8.1 THE FORKJOINTASK<V> CLASS ... 324

8.1.1 The ForkJoinWorkerThread Class .. 324

8.1.2 The ForkJoinTask Class .. 327

8.2 THE FORKJOINPOOL CLASS ... 330

8.3 THE RECURSIVEACTION CLASS... 336

8.3.1 Definition of the RecursiveAction Class ... 336

8.3.2 An Example .. 337

8.4 THE RECURSIVETASK<V> CLASS .. 340

8.4.1 The Definition of the RecursiveTask Class ... 340

8.4.2 An Example .. 341

8.5 FORKJOINPOOL’S ASYNCHRONOUS CALLS (EXECUTE AND SUBMIT) ... 344

8.6 SUMMARY... 346

8.7 EXERCISES ... 348

APPENDIX A ALGORITHM ANALYSIS ... 349

A.1 THE BIG-O NOTATION .. 349

A.2 GROWTH RATE COMPARISON .. 350

A.3 RUNNING TIME ESTIMATES.. 353

A.4 PROBLEM SOLVING EXAMPLES ... 354

A.4.1 Maximum Subsequence Sum Problem: O(n
3
) .. 354

A.4. 2 MAXIMUM SUBSEQUENCE SUM PROBLEM: O(N
2
) .. 356

A.4. 3 MAXIMUM SUBSEQUENCE SUM PROBLEM: O(N) (an Online Algorithm) 356

CONTENTS IX

A.4. 4 Array sub-array product problem .. 357

A.4.5 Two-sum-to-k problem ... 359

A.5 LINKED LIST EXAMPLES ... 360

A.5.1 Reversing a linked list ... 362

A.5.2 Detecting circularly linked list ... 363

A.6 HASHTABLE EXAMPLES ... 369

A.6.1 Linear probing ... 370

A.6.2 Separate chaining ... 372

A.6.3 The running time estimates of hashing .. 375

A.7 BINARY SEARCH ALGORITHM AND BINARY SEARCH TREES ... 376

A.7.1 Running Times of a Binary Search Algorithm ... 376

A.7.2 A Binary search tree .. 377

A.7.3 Traversing a binary search tree .. 379

A.7.4 Breadth-First Traversal ... 381

A.7.5 Finding the closest common ancestor of two child nodes in a binary tree 381

A.8 SORTING EXAMPLES... 384

A.8.1 Quick sort .. 384

A.8.2 Merge sort .. 385

A.9 INTERSECTION AND UNION EXAMPLES ... 388

A.10 EXERCISES .. 390

APPENDIX B THE BRIDGE EXERCISE ... 393

INDEX ... 401

Listing 1.1 Dekker’s algorithm ... 5

Listing 1.2 Peterson’s algorithm ... 6

Listing 1.3(a) The Bakery Algorithm (original form) .. 7

Listing 1.3(b) The Bakery Algorithm (revised form) ... 8

Listing 1.3(c) Bakery.java .. 9

Listing 1.4 Runnable.java ..13

Listing 1.5 Thread.java (partial) ..14

Listing 1.6 The start method of the Thread class ...16

Listing 1.7 The run method of the Thread class ..16

Listing 1.8(a) NewThread.java ..19

Listing 1.8(b) MainThread.java ...20

Listing 1.9(a) ExtendedThread.java ..21

Listing 1.9(b) MainThread2.java ...22

Listing 1.10(a) Messager.java ...24

Listing 1.10(b) MessageThread.java ...25

Listing 1.10(c) SynchTest0.java ..25

List of Programs

XII

Listing 1.11(a) Messager1.java ... 26

Listing 1.11(b) MessageThread1.java ... 27

Listing 1.11(c) SynchTest1.java ... 27

Listing 1.12(a) SimpleBuffer.java ... 29

Listing 1.12(b) SimpleBufferTest.java .. 30

Listing 1.13(a) Producer.java .. 30

Listing 1.13(b) Consumer.java .. 31

Listing 1.13(c) SimpleBufferTest.java .. 31

Listing 1.13(d) SimpleBuffer.java .. 32

Listing 1.14 SimpleBuffer.java ... 35

Listing 1.15 SimpleBuffer.java with guarded blocks .. 37

Listing 1.16 SimpleBuffer.java that acts like a queue ... 40

Listing 1.17(a) X.java ... 42

Listing 1.17(b) Y.java ... 43

Listing 1.18(a) DeadlockDemo0.java ... 44

Listing 1.18(b) DeadlockDemo1.java ... 44

Listing 1.19 Thread dump for the deadlock example (partial) .. 47

Listing 2.1 The Callable interface ... 54

Listing 2.2 The Future interface .. 54

Listing 2.3 FutureTask.java (partial) ... 58

Listing 2.4 AbstractExecutorService.java (partial) ... 60

Listing 2.5 ThreadPoolExecutor.java (partial) .. 61

Listing 2.6 ScheduledThreadPoolExecutor.java (partial) ... 64

Listing 2.7 One submit method and one schedule method from ScheduledThreadPoolExecutor 66

Listing 2.8 The DefaultThreadFactory Inner Class ... 68

Listing 2.9 The newSingleThreadExecutor method .. 69

Listing 2.10 The FinalizableDelegatedExecutorService class .. 69

Listing 2.11 The newFixedThreadPool method for the Executors utility class .. 70

Listing 2.12 The newCachedThreadPool method for the Executors utility class 70

XIII

Listing 2.13 SimpleESDemo0.java ...71

Listing 2.14 SimpleESDemo1.java ...72

Listing 2.15 SimpleESDemo2.java ...74

Listing 2.16 SimpleESDemo3.java ...77

Listing 2.17 SimpleESDemo4.java ...78

Listing 3.1 The Iterable interface ..86

Listing 3.2 The Iterator interface ...87

Listing 3.3 Collection.java ..87

Listing 3.4(a) The SortedSet interface ...89

Listing 3.4(b) The NavigableSet interface ...90

Listing 3.5 List interface ..91

Listing 3.6 ListIterator interface ..91

Listing 3.7 The Queue interface ..92

Listing 3.8 The Deque interface ..93

Listing 3.9 The AbstractSet class ..95

Listing 3.10 The HashSet class ..97

Listing 3.11 HashSetDemo.java ..98

Listing 3.12 LinkedHashSet.java ...99

Listing 3.13 LinkedHashSetDemo.java ...100

Listing 3.14 TreeSet.java ...101

Listing 3.15 TreeSetDemo.java ...102

Listing 3.16 AbastractList.java (partial) ..104

Listing 3.17 ArrayList.java (partial) ..106

Listing 3.18 ArrayListDemo.java ..108

Listing 3.19 Output of running the ArrayListDemo.java program ..109

Listing 3.20 AbstractSequentialList.java ...110

Listing 3.21 LinkedList.java (partial) ..113

Listing 3.22 LinkedListDemo.java ..115

Listing 3.23 Output of running the LinkedListDemo ..116

XIV

Listing 3.24 ArrayDeque.java (partial) ... 119

Listing 3.25 ArrayDequeDemo.java ... 121

Listing 3.26 AbstractQueue.java (partial) ... 122

Listing 3.27 PriorityQueue.java (partial) .. 123

Listing 3.28 PriorityQueueDemo.java .. 125

Listing 3.29 Map.java ... 128

Listing 3.30 SortedMap.java ... 129

Listing 3.31 NavigableMap.java ... 130

Listing 3.32 AbstractMap.java (partial) .. 131

Listing 3.33 HashMap.java (partial) ... 133

Listing 3.34 HashMapDemo.java ... 136

Listing 3.35 LinkedHashMap.java (partial) .. 138

Listing 3.36 LinkedHashMapDemo.java .. 140

Listing 3.37 TreeMap.java (partial) .. 142

Listing 3.38 TreeMapDemo.java .. 143

Listing 3.39 Collections.java (with the addAll method only) ... 145

Listing 3.40 CollectionsDemo.java ... 146

Listing 3.41 FreqencyDemo.java .. 147

Listing 3.42 CheckedSetDemo.java .. 149

Listing 3.43 CheckedSetDemo.java .. 151

Listing 3.44 AsLifoQueueDemo.java ... 154

Listing 3.45 NewSetFromMapDemo.java .. 155

Listing 3.46 EmptyListDemo.java .. 157

Listing 3.47 SingletonDemo.java .. 158

Listing 3.48 Arrays.java .. 160

Listing 4.1 AtomicInteger.java (partial) .. 167

Listing 4.2 AtomicIntegerDemo.java .. 169

Listing 4.3 AtomicIntegerArray.java (partial) .. 172

Listing 4.4 AtomicIntegerArrayDemo.java .. 174

XV

Listing 5.1 Lock.java ...180

Listing 5.2 ReentrantLock.java (partial) ..182

Listing 5.3 ReentrantLockDemo.java ..185

Listing 5.4 ReadWriteLock.java ..187

Listing 5.5 ReentrantReadWriteLock.java (partial) ..188

Listing 5.6 ReentrantReadWriteLockDemo.java...193

Listing 5.7 Condition.java ...195

Listing 5.8 BoundedBuffer.java ..196

Listing 5.9 ConditionDemo.java ...198

Listing 5.10 AbstractOwnableSynchronizer.java ..199

Listing 5.11 AbstractQueuedSynchronizer.java (partial) ..202

Listing 5.12 AbstractQueuedLongSynchronizer.java (partial) ..207

Listing 6.1 Semaphore.java (partial) ...212

Listing 6.2 SemaphoreDemo.java ...215

Listing 6.3 The result of running the SemaphoreDemo program ..217

Listing 6.4 The result of running the SemaphoreDemo program with semaphore’s acquire() and release()

methods commented out ..217

Listing 6.5 Buffer.java guarded by semaphores ..218

Listing 6.6 SemaphoreDemo2.java ...219

Listing 6.7 CyclicBarrier.java (partial) ..221

Listing 6.8 BarrierAction.java ...223

Listing 6.9 CyclicBarrierDemo.java ..224

Listing 6.10 CountDownLatch.java ...226

Listing 6.11 CountDownLatchDemo.java ...227

Listing 6.12 CountDownLatchDemo2.java ...228

Listing 6.13 Node class embedded in Exchanger ..230

Listing 6.14 Exchanger.java ..231

Listing 6.15 ExchangerDemo.java ..233

Listing 6.16 ExchangerDemo2.java ..234

Listing 6.17 PhaserDemo.java ...236

XVI

Listing 7.1 BlockingQueue.java .. 243

Listing 7.2 ArrayBlockingQueue.java (partial) ... 244

Listing 7.3 ArrayBlockingQueueDemo.java ... 248

Listing 7.4 SynchronousQueue.java (partial) .. 250

Listing 7.5 SynchronousQueueDemo.java .. 252

Listing 7.6 DelayQueue.java (partial) ... 254

Listing 7.7 DelayQueueDemo.java ... 256

Listing 7.8 PriorityBlockingQueue.java (partial) .. 259

Listing 7.9 PriorityBlockingQueueDemo.java .. 261

Listing 7.10 The HashEntry class embedded in the ConcurrentHashMap class 263

Listing 7.11 The Segment class embedded in the ConcurrentHashMap class .. 264

Listing 7.12 ConcurrentHashMap.java (partial).. 265

Listing 7.13 ConcurrentHashMapDemo.java .. 267

Listing 7.14 Output of running the ConcurrentHashMapDemo program ... 268

Listing 7.15 Node class embedded in ConcurrentLinkedQueue ... 269

Listing 7.16 ConcurrentLinkedQueue.java (partial) ... 270

Listing 7.17 ConcurrentLinkedQueueDemo.java ... 272

Listing 7.18 Result of executing the ConcurrentLinkedQueueDemo.java program 274

Listing 7.19 The Node class embedded in ConcurrentLinkedDeque class ... 274

Listing 7.20 ConcurrentLinkedDeque.java (partial) ... 276

Listing 7.21 ConcurrentLinkedDequeDemo.java ... 277

Listing 7.22 Result of executing the ConcurrentLinkedDequeDemo.java program 279

Listing 7.23 The Node class for the ConcurrentSkipListMap class .. 281

Listing 7.24 The Index<K, V> class and HeadIndex<K, V> class for the ConcurrentSkipListMap class

 .. 282

Listing 7.25 ConcurrentSkipListMap.java (partial) .. 284

Listing 7.26 ConcurrentSkipListMapDemo.java .. 285

Listing 7.27 Result of executing the ConcurrentSkipListMapDemo.java program 288

Listing 7.28 ConcurrentSkipListSet.java (partial) .. 290

Listing 7.29 ConcurrentSkipListSetDemo.java... 292

XVII

Listing 7.30 Result of executing the ConcurrentSkipListSetDemo.java program294

Listing 7.31 LinkedBlockingQueue.java (partial) ...296

Listing 7.32 LinkedBlockingQueueDemo.java ...299

Listing 7.33 Result of executing the ConcurrentSkipListSetDemo.java program301

Listing 7.34 LinkedBlockingDeque.java (partial) ...303

Listing 7.35 LinkedBlockingDequeDemo.java ...306

Listing 7.36 Result of executing the ConcurrentSkipListSetDemo.java program308

Listing 7.37 LinkedTransferQueue.java (partial) ..309

Listing 7.38 LinkedTransferQueueDemo.java ..311

Listing 7.39 Result of executing the ConcurrentSkipListSetDemo.java program312

Listing 7.40 CopyOnWriteArrayList.java (partial) ...314

Listing 7.41 COWArrayListDemo.java ...317

Listing 7.42 Result of executing the COWArrayListDemo.java program...318

Listing 7.43 CopyOnWriteArraySet.java (partial) ..319

Listing 8.1 ForkJoinWorkerThread.java..325

Listing 8.2 ForkJoinTask.java (partial) ...328

Listing 8.3 ForkJoinPool.java (partial) ..332

Listing 8.4 RecursiveAction.java ..336

Listing 8.5 RecursiveActionDemo.java ...337

Listing 8.6 Output of running the RecursiveActionDemo program ..339

Listing 8.7 RecursiveTask.java ...341

Listing 8.8 RecursiveTaskDemo.java ..342

Listing 8.9 Output of running the RecursiveTaskDemo program ...344

Listing 8.10 AsynchronousDemo.java ..345

Listing 8.11 Output of running the AsynchronousDemo program ..346

Listing A.1 An O(n
3
) algorithm for solving the max subsequence sum problem355

Listing A.2 An O(n
2
) algorithm for solving the max subsequence sum problem356

Listing A.3 An O(n) algorithm for solving the max subsequence sum problem357

Listing A.4 ArraySubProducts.java ...358

XVIII

Listing A.5 TwoSumToK.java .. 359

Listing A.6 ListNode.java ... 360

Listing A.7 SinglyLinkedList.java .. 361

Listing A.8 Reversing a linked list .. 363

Listing A.9 LinkedList.java .. 363

Listing A.10 DetectCircularList.java .. 367

Listing A.11 Output of running the detecting circularly linked list .. 368

Listing A.12 LinkedHashTableDemo.java .. 373

Listing A.13 A binary search algorithm .. 376

Listing A.14 BSTNode class (getters and setters are omitted) .. 377

Listing A.15 BST class ... 378

Listing A.16 Methods for traversing a BST .. 380

Listing A.17 breadthFirst traversal for a tree .. 381

Listing A.18 Finding the closest common ancestor of two child nodes in a binary tree 382

Listing A.19 BSTDemo.java ... 383

Listing A.20 QuickSortDemo.java .. 384

Listing A.21 MergeSortDemo.java ... 387

Listing A.22 IntersectionAndUnion.java .. 388

Listing B.1 Bridge.java ... 393

Listing B.2 Car.java .. 395

Listing B.3 Driver.java .. 397

Listing B.4 Sample test output .. 397

Figure P.1 Statistics on popularity of programming languages .. xxiv

Figure 1.1 A job consisting of two consecutive stages .. 1

Figure 1.2 Possible states of a thread ..12

Figure 1.3 Fields and methods for the Thread class ..18

Figure 1.4 Main and child threads with un-deterministic sequence of executions21

Figure 1.5 Sequences interleaved between the main and child threads out of four runs: one is different

from the other three ...23

Figure 1.6 Livelock that occurred with the busy-wait/unsynchronized SimpleBuffer example33

Figure 1.7 The states of the Producer and Consumer threads when a livelock occurred34

Figure 1.8 The SimpleBuffer starvation situation: The Producer was stuck after filling the last element

while the consumer was stuck after retrieving the first element ..36

Figure 1.9 Thread states in the starvation situation: One was in RUNNABLE state while the other was in

BLOCKED state permanently ...36

Table of Figures

XX

Figure 1.10 States of the Producer and Consumer threads with the SimpleBuffer class implemented with

guarded blocks .. 39

Figure 1.11 Zero CPU usage during the deadlock period .. 45

Figure 1.12 A deadlock detected on the jvisualvm tool ... 46

Figure 2.1 The Java thread ExecutorService framework ... 53

Figure 2.2 The FutureTask class hierarchy .. 58

Figure 2.3 Methods of the AbstractExecutorService class .. 59

Figure 2.4 ThreadPoolExecutor’s constructors ... 63

Figure 2.5 More methods for the ThreadPoolExecutor class .. 63

Figure 2.6 The schedule and submit methods for ScheduledThreadPoolExecutor class .. 67

Figure 2.7 Static factory methods of the Executors utility class .. 67

Figure 3.1 java.util package ... 84

Figure 3.2 The interfaces defined by the Collections Framework .. 86

Figure 3.3 The Set collection classes... 94

Figure 3.4 The List collection classes .. 103

Figure 3.5 The Queue collection classes .. 118

Figure 3.6 The Map interfaces and classes .. 127

Figure 4.1 (a) left: atomic operations; and (b) right: locks ... 164

Figure 4.2 Concurrent utilities contained in the java.util.concurrent package ... 164

Figure 4.3 The AtomicIntegerArray class on Eclipse IDE .. 171

Figure 5.1 Interfaces and classes contained in the java.util.concurrent.locks package 178

Figure 6.1 A Semaphore object has an instance of Sync, which extends AQS and is sub-classed by

NonfairSync and FairSync .. 210

Figure 6.2 Exchanging data among three threads .. 235

Figure 7.1 The lineage for the ArrayBlockingQueue, SynchronousQueue, DelayQueue and

PriorityBlockingQueue ... 242

Figure 7.2 The Transferer class sub-classed by TransferQueue and TransferStack ... 250

Figure 7.3 The structure of a ConcurrentHashMap ... 280

Figure 7.4 The structure of a skip list ... 280

Figure 7.5 The class hierarchy for the ConcurrentSkipListMap class. ... 281

XXI

Figure 7.6 linkFirst logic ..306

Figure 8.1 Class hierarchy summary for the ForkJoin framework ...347

Figure A.1 Growth rate comparison among functions of log(n), log
2
(n), n and nlog(n)352

Figure A.2 Growth rate comparison among functions of n
2
, n

3
 and 2

n
 ...352

Figure A.3 The maximum subsequence sum problem ..354

Figure A.4 A linked list ..360

Figure A.5 A circularly linked list with 19 nodes ...366

Figure A.6 A hash table data structure based on linear probing ...372

Figure A.7 A hash table data structure based on separate chaining ..372

Figure A.8 A binary tree ...384

Figure A.9 The core logic of the merge sort algorithm ..386

WHY THIS BOOK

As we all know, Java is one of the most popular programming languages for developing applications,

especially enterprise applications. (For the latest statistics about the popularity of the programing

languages, refer to Figure P.1 on the next page.) Whether you are already using Java to develop exciting

cloud computing or big data or traditional enterprise applications or planning to enter these areas as a

beginner or an experienced Java developer, having a systematic understanding of the power and

flexibility that the modern Java concurrent programming frameworks offer is important. Applications in

these areas require high performance and scalability, driving unprecedented high demands for skills in

Java concurrent programming.

However, Java concurrent programming is one of the most challenging areas in terms of complexity and

unpredictability. Certainly, no books can be so helpful to turn anybody into an expert overnight, but the

approach to acquiring a new skill (programming or anything else) certainly matters. My observation is

that there are far more books in teaching general programming in Java than in teaching concurrent

programming in Java. Even though there are a few texts teaching concurrent programming in Java, they

are either outdated or not sufficiently systematic, coherent and comprehensive. This text attempts to fill

these gaps by taking a new approach that emphasizes more on understanding how various Java

concurrent programming models, collections, synchronizers and frameworks are actually implemented

internally. The text is also accompanied by many carefully-crafted examples.

Preface

XXIV

Figure P.1 Statistics on popularity of programming languages

Of course, programming is both science and art, which means that one can get started as quickly as

possible, but it may take many years of experience to master it. Having said that, it’s not this book’s

objective to teach those who are already masters in this field. Instead, I hope that this book can provide

an easier entry into Java concurrent programming for those who are passionate about programming,

especially motivated and determined to develop high-performance and scalable Java software.

WHOM THIS BOOK IS FOR

Obviously, this text is for those who are interested in learning Java concurrent programming. The text is

based on how various classes are actually implemented internally. I took this approach in order to

minimize the possibilities of any kind of misperceptions and misunderstandings. Besides, a great

additional benefit out of this approach is that it gives all of us an opportunity to see and appreciate how

those masters coded all of those classes that we use every day for our Java concurrent programming

activities. Therefore, I am confident that this book will not only enhance your Java concurrent

programming skills specifically but also Java programming skills in general.

HOW THIS BOOK IS ORGANIZED

C++

Java

C

Objective-C

PHP

C#

XXV

This book consists of the following chapters:

▪ Chapter 1 Multithreaded Programming in Java: This chapter starts with the most basic concept of

what a Java thread is about, and then helps you understand how to create a thread, how to use the

traditional implicit monitor locks to synchronize a method or a block of code, and how inter-thread

communications work. It also covers the concepts of livelock, starvation and deadlock and how to

detect them effectively.

▪ Chapter 2 Java Thread ExecutorService Framework: This chapter focuses on understanding the

ExecutorService framework, which is the most commonly used framework for many real Java

applications to manage the lifecycle of the threads that perform various tasks concurrently.

▪ Chapter 3 The Java Collections Framework: This chapter is dedicated to the unsynchronized

collections that are used in many real Java applications. These collections are covered not only

because they are important but also because their synchronized counterparts are built on them.

▪ Chapter 4 Atomic Operations: This chapter introduces the atomic operations provided at the lowest

level, including the Unsafe class and the atomic classes for synchronizing single variables.

▪ Chapter 5 Locks: This chapter introduces the finer-grade locks that are explicit and flexible,

including the ReentrantLock and ReentrantReadWriteLock classes.

▪ Chapter 6 Synchronizers: This chapter covers all common types of synchronizers such as

semaphores, cyclic barriers, countdown latches, exchangers and phasers. The entire Java concurrent

programming framework would be incomplete without these synchronizers.

▪ Chapter 7 Synchronized Collections: This chapter focuses on various built-in thread-safe lists,

queues, sets and maps. These synchronized collections are well-tested and should be used as much as

possible as it’s hard to build an application without using proper data structures, especially using

synchronized data structures if the application will be run in multithreaded environment.

▪ Chapter 8 Parallel Programming Using the Fork-Join Framework: This chapter introduces the

Fork-Join framework for solving large dataset related challenging computational tasks in the realm of

parallel programming. This framework is becoming more and more relevant with the advent of new

areas such as cloud computing, big data analytics, and so on.

▪ Appendix A Algorithm Analysis: This appendix gives an introductory review of algorithm analysis

to help you understand the performance characteristics of various operations associated with those

collections. This is an important skill to have for being able to choose proper data structures among

many of them to solve a particular problem.

▪ Appendix B The Bridge Exercise: This appendix provides a reference implementation for the

classic bridge exercise.

My recommendation is that you start with Appendix A Algorithm Analysis, and then follow the sequence

of all chapters, which, from my perspectives, is the most logical way of learning Java concurrent

programming.

SOFTWARE AND HARDWARE

I hope that you do not just read the text but also try to understand all code snippets and examples as well.

In order to work on those examples, you need a PC and install a version of JDK 7, preferably with the

XXVI

Eclipse IDE as well. You can download all examples from this book’s website, import them into your

IDE, examine them and run them.

HOW TO USE THIS BOOK

To achieve the maximum effectiveness and efficiency, the suggested way to use this book is:

1. Try to understand the concepts first at the high level, for example, why a class or data structure is

needed and what problems it helps solve.

2. Try to understand the partial implementation of a class by tracing it with the help of the text or on

your own. It will not only help you become a master of solving concurrency challenges but also a

master of programming in Java in general.

3. For the many examples presented in the text, don’t just read them. Instead, import them on to your

system and get your hands dirty with them by even modifying them and running them yourself.

You can find colored images (when color is important) at this book’s companion website at

http://www.perfmath.com/jcp/colored_images.pdf. The book also contains exercises at the end of each

chapter to help you check and solidify what you have learnt after completing a chapter.

TYPOGRAPHIC CONVENTIONS

Times New Roman indicates normal text blocks.

Italic indicates emphasis, definitions, email addresses, and URLs in general.

Courier New font indicates code listings, scripts, and all other types of programming segments.

Courier indicates programming elements outside a program or script as well as

everything related to executing a program or script such as commands, file names,

directoy paths, entries on an HTML form, etc.

HOW TO REACH THE AUTHOR

All errors in the text are the author’s responsibility. You are welcome to email the typos, errors and bugs

you found as well as any questions and comments you may have to me at henry_h_liu@perfmath.com.

Your valuable feedback will be greatly appreciated.

THE BOOK’S WEB SITE

For downloads and updates, please visit the book’s website at http://www.perfmath.com.

Henry H. Liu, PH. D.

Palo Alto, California

Summer, 2015

http://www.perfmath.com/jcp/colored_images.pdf
http://www.perfmath.com/

First, I would really like to thank the self-publishing vendors I have chosen for making this book

available to you. This is the most cost-effective and efficient approach for both you as my audience and

myself as author. Computer and software technologies evolve so fast that a more timely publishing

approach is beneficial for all of us. In addition, my gratitude extends to my wife Sarah and our son

William, as I could have not been able to complete this book without their support and patience.

I would also like to thank my audience for valuable feedback and comments, which I have taken whole-

heartedly and included every time this book was updated. I am particularly grateful to those master-level

programmers who implemented various classes that make Java concurrent programming not only very

useful but also enjoyable. The text heavily depends on their well-documented implementations of

various classes to explain as accurately as possible how those frameworks work. I do not feel I have the

privilege to mention their names here, but we all know whom they are.

Acknowledgements

 Multithreaded Programming in 1

Java

As we all know, software programs execute in processes and threads. The difference between a process

and a thread is that a process has its own self-contained execution environment, including a private

memory area, while a thread is often called a lightweight process as it shares the containing process’s

resources, such as memory and open files. A thread resides within its parent thread or process.

Threads are as important as processes, as they allow more than one task to be executed concurrently

within a process, which enhances a system’s overall throughput – regardless of whether the system has

one processor or multi-processors or multi-cores. Even if a system has only one processor, most OS

supports a feature called time slicing, which allows various processes and threads take turn to execute,

giving a user an illusion that multiple tasks were being executed concurrently.

Prior to our journey to exploring multithreaded programming in Java, I’d like to scope out the

perspectives of concurrent programming upfront. This will help us understand where our battlefields will

be and how we know we are successful with our concurrent programming efforts.

1.1 PERSPECTIVES OF CONCURRENT PROGRAMMING

Perhaps we should ask why we need to exploit concurrent programming in the first place after all. The

answer is that it’s all performance-driven. Let’s start with a performance law next.

Assume that we have a task that takes two stages to complete sequentially, as shown in Figure 1.1. What

is the total system throughput, given throughput X1 for stage 1 and throughput X2 for stage 2?

Figure 1.1 A job consisting of two consecutive stages

System (X
0
)

stage 1

(X1)

stage 2

(X2)

2 JAVA CONCURRENT PROGRAMMING: A QUANTITATIVE APPROACH

It turns out that the total system throughput, X0, can be expressed as follows [Java Performance and

Scalability: A Quantitative Approach, Henry H. Liu, CreateSpace, 2013]:

21

21
0

XX

XX
X




 (1.1)

where X1 = N/T1 (stage 1) is the stage 1 throughput and X2 = N/T2 is the stage 2 throughput. Here, N is

the total number of transactions to be processed by the two stages sequentially, while T1 and T2 are the

durations taken at stages 1 and 2, respectively. Equation (1.1) sets the performance law for sequential

programs. It can be extended to the case of n sequential stages as follows:








n

i

i

n

i

i

X

X

X

1

1
0

 (1.2)

However, it’s sufficient to limit n to n = 2 to make our point clear here: This formula reveals the key to

understanding the performance bottleneck of a system. Suppose stage 2 is the bottleneck, namely, stage

2’s throughput is much lower than that of stage 1, or:

 X2 << X1 (1.3)

Equation (1.1) can now be approximated as:

 X0  X2 (1.4)

The above formula states that in order to improve the total system throughput, optimization efforts have

to focus on stage 2. In addition to many potential optimization and tuning opportunities, let’s see how we

can improve the performance of stage 2 using concurrency, which is the main theme of this text.

Let’s further simplify the matter by assuming that:

1. Stage 1 is sequential and cannot be made to run concurrently or in parallel.

2. Let’s assume that the total wall-clock, elapsed time is T = T1 + T2, X1 and X2 can be re-

formatted as

 𝑋1 =
N/𝑇

𝑇1 𝑇⁄
=

𝑋0

𝑠
 (1.5a)

 𝑋2 =
N/𝑇

𝑇2 𝑇⁄
= =

1/𝑇

(𝑇− 𝑇1) 𝑇⁄
=

𝑋0

1−𝑠
 (1.5b)

Here, we assume that the total portion of the sequential stage is s = 𝑇1 𝑇⁄ , the portion of the time spent

in stage 1; thus the portion of stage 2 that can run concurrently is 1 – s, which would be (1 – s)/m if

executed by m threads concurrently. Substituting X1 and X2 expressed in Equations (1.5a) and (1.5b) into

Equation (1.1) gives:

CHAPTER 1: MULTITHREADED PROGRAMMING IN JAVA 3

 𝑝 =
1

𝑠+
1−𝑠

𝑚

 (1.6)

Equation (1.6) is called Amdahl’s law, which represents the speedup (p) if the portion that can run

concurrently is run concurrently by m threads. Let’s use the following two extreme examples to illustrate

the implications of Equation (1.6), assuming m = 10:

1. s = 0.1 (10%). This case means that 90% of the process can be run concurrently. With m = 10, p

 5.3, which implies that by running the portion that can be run concurrently with 10 threads, the

maximum speedup would be 5.3 times, not 10 times.

2. s = 0.9 (90%). This case means that 10% of the process can be run concurrently. With m = 10, p

 1.1, which implies that by running the portion that can be run concurrently with 10 threads, the

maximum speedup would be 10% only.

The above examples confirm an important principle that whether sequential or concurrent, the evaluation

of software system performance must be quantitative. We do not need to follow all principles of

metrologies, but a basic rule is that all performance optimization initiatives and efforts must be based on

well-designed and executed measurements. For example, it’s meaningless is to make 10% of the process

run concurrently and achieve 10% gain only while ignoring the 90% of it, as shown by the second case

described above.

However, it’s important to recognize and acknowledge that pursuing the performance of concurrent

programs is different from pursuing the performance of sequential programs. For concurrent programs,

we are mainly concerned with two things:

1. Thread-safety. This concern means that the three properties of mutual exclusion, deadlock-free,

and starvation-free are all preserved, or “nothing bad ever happens,” as vaguely stated in some

texts. However, it’s not so easy to guarantee thread-safety as threads do not follow repeatable

sequences of executions unless coordinated properly. Whenever threads need to be coordinated

properly to produce desired results, it’s a thread-safety concern.

2. Liveness failures. Liveness means that concurrent operations execute and produce deterministic

results as if they were sequential, or “something good eventually happens,” as vaguely stated in

some texts. Therefore, a liveness failure is a reflection that expected outcome did not occur. As

you will see, liveness failures may occur in a variety of forms, such as livelock, starvation,

deadlock, and so on.

Next, we give a historical overview of concurrent algorithms for two purposes:

▪ To help re-enforce the thread-safety and liveness concerns as stated above.

▪ To help reflect on some brilliant ideas about composing concurrent algorithms during the earlier days

of computers when no hardware-level and/or OS-level synchronization primitives were available to

help ease concurrent programming. I hope that after this overview, you would appreciate more how

fortunate we are with massive support of Java concurrent constructs that will be detailed throughout

the remainder of this text.

We will cover three most representative concurrent algorithms, developed by Dekker, Peterson and

Lamport, respectively. Instead of dragging you into the drudgery of rigorous, formal proofs, we will

focus more on the ideas and concepts behind those algorithms.

4 JAVA CONCURRENT PROGRAMMING: A QUANTITATIVE APPROACH

1.2 A HISTORICAL OVERVIEW OF CONCURRENT ALGORITHMS

It’s significantly harder to write concurrent programs than to write sequential programs, as there is only

one pre-determined execution path with a sequential program, while there could be many execution paths

with execution steps from multiple processes or threads intermingled un-deterministically, which may

result in un-predictable and/or un-desirable results. Dijkstra recognized the difficulty with concurrent

programming in 1960’s and contributed significantly in helping shape the field and provide some

solutions, especially through the concept of semaphores, as will be covered later in this text.

Essentially, a concurrent algorithm is deemed correct if it can be proved that it preserves the following

three properties:

1. Mutual exclusion: The two processes may not be in their respective critical sections

simultaneously.

2. Deadlock-free: The two processes may never block each other without letting the other party

ever enter its critical section.

3. Starvation-free: Any one process may never take exclusive control over execution and not give

chances for the other party to enter its critical section.

The first concurrent algorithm was offered by Dekker, which is correct, but kind of ad-hoc. About 14

years later, Peterson solved the same problem in a simplest, more elegant way, which “puts an end to the

myth of concurrent programming control …,” in his own words in his two-page seminal paper with well-

deserved provocativeness. Finally, in 1970’s, Lamport published his famous Bakery algorithm, which

laid the foundation for today’s fault-tolerance implementations in clustered computing. Retrospectively,

those episodes are very inspiring and enjoyable.

Next, let’s start with Dekker’s algorithm, which is often used as a prelude to Peterson’s algorithm, which

is one of the center themes of this section. We conclude this section with Lamport’s Bakery algorithm,

which is an important milestone not only for concurrent programming but also for high-availability or

fault-tolerance systems we build today.

1.2.1 Dekker’s Algorithm

Dekker’s algorithm was documented in Dijkstra’s 1968 lecture notes, titled Co-operating sequential

processes (https://www.cs.utexas.edu/users/EWD/transcriptions/EWD01xx/EWD123.html). The original

algorithm was described using convoluted if-then and goto statements, which are not intuitive and hard

to reason about. However, it does satisfy the three properties of a correct concurrent algorithm as stated

previously.

Dekker’s algorithm, as shown in Listing 1.1, can be understood as follows:

▪ Line 1: Repeat while true;

▪ Line 2: I intend to enter my critical section;

▪ Line 3: I wait while she intends to enter;

▪ Line 4: If it’s her turn;

▪ Line 5: I back off;

https://www.cs.utexas.edu/users/EWD/transcriptions/EWD01xx/EWD123.html

CHAPTER 1: MULTITHREADED PROGRAMMING IN JAVA 5

▪ Line 6: I spin wait while it’s her turn;

▪ Line 7: She is done so I intend to enter;

▪ Line 8: Exit the turn-loop;

▪ Line 9: Exit the intend-loop;

▪ /* Critical Section */

▪ Line 10: Give turn to her;

▪ Line 11: I do not intend to enter my CS for now.

The two while-loops, expressed at lines 3 and 6, respectively, set up a polite manner to wait as long as

the other party intends to enter the CS (line 3) and the turn favors the other party (line 6), which help

guarantee mutual exclusion and deadlock-free. Lines 10 – 11 guarantee the property of deadlock-free by

setting the turn to the other party and signaling that he/she has just exited his/her critical section.

It’s clear that Dekker’s algorithm looks a bit ad-hoc. About 13 years later, Peterson solved the same

problem in a much simpler and elegant manner, as is discussed in the next section.

Listing 1.1 Dekker’s algorithm

/* (c1, c2 = 0 or 1; turn = 1 or 2) */

--- -

/* process P1 */ |

1 while (true) { |

2 c1 = 1; |

3 while (c2 == 1) { |

4 if (turn == 2) { |

5 c1 = 0; |

6 while (turn == 2) {} |

7 c1 = 1; |

8 } |

9 } |

 /* the Critical Section */ |

10 turn = 2; |

11 c1 = 0; |

 /* Non-Critical Section */ |

12 } |

/* process P2 */

1 while (true) {

2 c2 = 1;

3 while (c1 == 1) {

4 if (turn == 1) {

5 c2 = 0;

6 while (turn == 1) {}

7 c2 = 1;

8 }

9 }

 /* the Critical Section */

10 turn = 1;

11 c2 = 0;

 /* Non-Critical Section */

12 }

--- -

1.2.2 Peterson’s Algorithm

14 years later in 1981, Peterson came up with a concurrent algorithm that is much simpler and more

elegant than Dekker’s algorithm. If you are really interested in studying concurrent algorithms, I strongly

suggest that you read his original paper, titled Myths About The Mutual Exclusion Problem, published in

Information Processing Letters, Vol. 12, No. 3, pp 115 – 116 (only two pages), 1981.

6 JAVA CONCURRENT PROGRAMMING: A QUANTITATIVE APPROACH

Listing 1.2 shows Peterson’s algorithm, which I have tried to make as close to its original presentation as

possible. It can be understood as follows:

▪ Line 1: Expresses the intention to enter;

▪ Line 2: Sets the turn favorable to me;

▪ Line 3: Sets up a busy wait to wait until neither she wants to enter nor it is her turn, or in other words,

wait while she wants to enter and it is her turn. Note the logical operator precedence of NOT (3), ==

(9), and OR (14), where the numbers in brackets are the precedence in C++ assigned to each of those

logical operators. The line under line 3 is the equivalent busy-wait loop that is closer to what we

would have in real programming languages.

▪ Line 4: Signals the current state of having just exited the critical section.

A significant difference between Dekker’s algorithm and Peterson’s algorithm is that the former has two

loops while the latter has only one as shown at line 3 in Listing 1.3. Instead of giving you my version of

understanding of how his algorithm guarantees the mutual exclusion, deadlock-free and starvation-free

properties, I’d like to quote one of his paragraphs as follows:

“Since the more complex algorithms naturally require more complex proofs, one wonders whether the

prevalent attitude on ‘formal’ correctness arguments is based on poorly structured algorithms. Perhaps

good parallel algorithms are not really that hard to understand. In any case, this solution puts an end to

the myth that the two process mutual exclusion problem requires complex solutions with complex proofs.

(Dijkstra has recently devised a more formal proof of mutual exclusion for this algorithm [7] which, to

this author, seems unnaturally complex for such a simple algorithm.)”

Next, we discuss the Bakery algorithm devised by Lamport.

Listing 1.2 Peterson’s algorithm

/* (Q1, Q2 = true or false; TURN = 1 or 2) */

/* trying protocol for P1 */ |

1 Q1 = true; |

2 TURN = 1; |

3 wait until not Q2 or TURN == 2; |

// while (Q2 && TURN != 2) {} |

/* critical section */ |

/* exit protocol for P1 */ |

4 Q1 = false; |

/* trying protocol for P2 */

1 Q2 = true;

2 TURN = 2;

3 wait until not Q1 or TURN == 1;

// while (Q1 && TURN != 1) {}

/* critical section */

/* exit protocol for P2 */

4 Q2 = false;

--- --------------------

1.2.3 The Bakery Algorithm

Prior to the Bakery algorithm by Lamport, Knuth [Additional comments on a problem in concurrent

programming control. Comm. Acm 9, 5 (May 1966), 321-322], deBruijn [Additional comments on a

problem in concurrent programming control. Comm. Acm 10, 3 (Mar. 1967), 137-138], Eisenberg and

CHAPTER 1: MULTITHREADED PROGRAMMING IN JAVA 7

McGuire [Further comments on Dijkstra’s concurrent programming control problem. Comm. Acm 15,

11 (Nov. 1972), 999] published their solutions to the concurrent programming problem laid out initially

and solved by Dijkstra [Solution of a problem in concurrent programming control. Comm. Acm 8, 9

(Sept. 1965), 569] and later solved by Dijkstra using semaphores [The structure of THE

multiprogramming system. Comm. Acm 11, 5 (May 1968), 341-346]. All these solutions, including the

semaphore-based solution, assume that all computers share a same memory location. If this shared

memory fails, the entire system halts.

Lamport’s Bakery algorithm assumes N processors, each containing its own memory unit. A processor

may read from any other processor’s memory, but it need only write into its memory, which is a typical

“shared read, exclusive write” pattern. In the case that if a read and a write operation to a single memory

location occur simultaneously, only the write operation must be performed correctly, while the read

operation may return any arbitrary value, which is remarkable.

The essence of the Bakery algorithm is that a processor is allowed to fail at any time without bringing

down the entire system. It is assumed that when a processor fails, it immediately goes to its noncritical

section and halts. The failed processor’s memory may return arbitrary values but eventually will return a

value of zero.

Unlike the previous algorithms, the Bakery algorithm also guarantees the fairness of first-come-first-

served. When a processor wants to enter its critical section, it first executes a loop-free block of code,

that is, a fixed number of steps. It is then guaranteed to enter its critical section prior to any other

processor that later comes for service.

The algorithm mimics how a bakery works. A customer receives a number when entering the shop. The

holder of the lowest number is the next one to be served. The processors are named 1, ..., N, each of

which chooses its own number. If two processors choose the same number, then the one with the lowest

ID (or name) goes first.

Listing 1.3(a) shows the Bakery algorithm in its original form as published by Lamport. It starts with two

integer arrays, choosing[1:N] and number[1:N]. The elements of choosing[i] and number[i] are in

processor i’s memory, and are initially zero. The range of number[i] is unbounded. The expression

(number[j], j) < (numbet[i], i) means number[j] < number[i], or j < i if number[j] = number[i].

The processor i is allowed to fail at any time, and then restarted in its non-critical section with

choosing[i] = number[i] = 0. However, if a processor keeps failing and restarting, it may deadlock

the system.

Listing 1.3(a) The Bakery Algorithm (original form)

1 integer array choosing[1:N], number[1:N];

2 begin integer j;

3 L1: choosing[i] := 1;

4 number[i] := 1 + maximum(number[1],...,number[N]);

5 choosing[i] := 0;

6 for j = 1 step 1 until N do

7 begin

8 L2: if choosing[j] !=0 then goto L2;

8 JAVA CONCURRENT PROGRAMMING: A QUANTITATIVE APPROACH

9 L3: if number[j] != 0 and (number[j], j) < (number[i], i)

 then goto L3;

10 end;

11 critical section

12 number[i] = 0;

13 noncritical section;

14 goto L1;

15 end

Listing 1.3(b) shows the same Bakery algorithm in a revised form to make it easier to understand. There

are two important states for processor i:

▪ In the door way when choosing[i] is set to 1 at line 4

▪ In the bakery from when choosing[i] is set to 0 at line 6 until it either fails or leaves the critical

section prior to line 11.

Listing 1.3(c) shows a Java implementation of the Bakery algorithm, adapted from an article available

online at https://en.wikipedia.org/wiki/Lamport%27s_bakery_algorithm. Note that Java initializes all

elements of an int array to zero and all members of a Boolean array to false by default. Lines 730 and

3234 show the lock and unlock methods for thread i, respectively.

The key to understanding the Bakery algorithm lies with the two while-loops displayed at lines 8 and 9,

respectively. Line 8 means that processor i should wait while processor j is still in the door way choosing

its number, while line 9 means that while in the bakery, processor i should continue waiting while there

exist processes with lower numbers or lower ID’s if numbers are equal.

It’s interesting to note the arrangement that each thread only writes its own storage, and only reads are

shared. Since the algorithm is not built on top of some lower level atomic operations, such as compare-

and-swap (CAS), as we will discuss later, it can be used to implement mutual exclusion on memory that

lacks synchronization primitives provided at the hardware or OS level, e.g., a storage shared among a

cluster of computers. Thus, Lamport’s Bakery algorithm is not only interesting academically but also

practically.

You can refer to Lamport’s original paper for the proofs of all three properties of mutual exclusion,

deadlock-free and starvation-free. Next, we discuss the evolution of Java concurrency support.

Listing 1.3(b) The Bakery Algorithm (revised form)

1 integer array choosing[1:N], number[1:N];

2 integer j;

3 while (true) {

 /* doorway */

4 choosing[i] = 1;

5 number[i] = 1 + maximum(number[1],...,number[N]);

 /* bakery */

6 choosing[i] = 0;

7 for (int j = 1; j < N; j++) {

8 while(choosing[j] != 0) {};

9 while(number[j] != 0 && (number[j], j) < (number[i], i)) {}

10 };

https://en.wikipedia.org/wiki/Lamport%27s_bakery_algorithm

CHAPTER 1: MULTITHREADED PROGRAMMING IN JAVA 9

 /* critical section */

11 number[i] = 0;

 /* noncritical section */

12 }

Listing 1.3(c) Bakery.java

1 public class Bakery {

2 int threads = 10;

3

4 int[] number = new int[threads];

5 boolean[] choosing = new boolean[threads];

6

7 public void lock(int i)

8 {

9 choosing[i] = true;

10 int max = 0;

11 for (int n : number) {

12 if (n > max) {

13 max = n;

14 }

15 } // find max in the array

16 number[i] = 1 + max;

17 choosing[i] = false;

18 for (int j = 0; j < number.length; ++j) {

19 if (j != i) {

20 while (choosing[j]) {

21 Thread.yield();

22 }

23 while (number[j] != 0

24 && (number[j] < number[i] ||

 (number[i] == number[j] && j < i))) {

25 Thread.yield();

26 }

27 }

28 }

29 /* critical section */

30 }

31
32 public void unlock(int i) {

33 number[i] = 0;

34 }

35 }

1.3 EVOLUTION OF JAVA CONCURRENCY SUPPORT

As one of the most popular, modern programming languages, the Java platform began with providing

basic concurrency support in the Java programming language itself and its class libraries since its earliest

version of JDK 1.0, mostly through the synchronized keyword and the volatile keyword, as will be

discussed later. Java 5 enhanced the concurrency support by providing high-level concurrency API in the

10 JAVA CONCURRENT PROGRAMMING: A QUANTITATIVE APPROACH

java.util.concurrent package, making Java concurrent programming more flexible with the

following new features:

▪ Lock objects for finer-granularity mutual exclusion control

▪ Executor interface for much-needed thread pool management for large scale applications

▪ Concurrent collections for managing large collections of data with reduced need for synchronization

▪ Atomic variables for minimizing the need for synchronization at the application level

Java 7 further introduced a new thread pool named Fork-Join pool, which was designed for computations

that can be broken into smaller pieces and processed recursively. The Fork-Join pool spreads split sub-

tasks among multiple CPU cores transparently, which greatly simplifies concurrent programming while

enhancing the performance and scalability of an application.

Finally, I’d like to mention that Java 8 added new extensions for more powerful parallel-processing

support with features such as CompletableFuture and streams, which will be covered in future

versions of this book.

1.4 JAVA THREADS

A Java thread is a single unit of execution on its own for executing a designated computing task. A Java

thread can be defined by implementing an interface named Runnable or by extending a class named

Thread, which implements Runnable. However, the challenging is not with how to create a Java thread,

but with how to coordinate threads so that they don’t stampede on each other and end up with un-

deterministic results.

Next, let’s review some of the issues that might arise with Java concurrent programming.

1.4.1 Potential Issues with Java Concurrency

The following issues may arise associated with Java multithreaded programming:

▪ Thread Interference. Each thread has its own prescribed set of operations to carry out. Interference

occurs when operations that run in different threads but act on the same data interleave. Depending

on how the sequences of steps overlap, the results may be un-deterministic.

▪ Memory Inconsistency Errors. It’s imperative that all threads have consistent views of the state of a

shared resource or data structure or object in general. However, depending on how multiple threads

are coordinated, memory inconsistency errors may occur, causing undesirable data corruption issues.

▪ Context Switching Overhead. Whenever execution moves to a different thread, the context of the

current thread must be switched, causing context switching overhead that eventually limits the

scalability of a system. This is more of a scalability issue than a multi-threading correctness issue.

To some extent, memory inconsistency errors are a consequence of thread interference not coordinated

properly. Memory inconsistency errors can be avoided by establishing a happens-before relationship,

which guarantees that memory write by one thread is visible to a read by another thread if the write

operation happens-before the read operation. Various mechanisms, such as described below, exist in the

earlier versions of Java to help enforce happens-before relationships:

CHAPTER 1: MULTITHREADED PROGRAMMING IN JAVA 11

▪ Synchronization: Synchronization uses an internal entity known as the intrinsic lock or monitor lock

or simply monitor to help both enforce exclusive access to an object's state and establish happens-

before relationships that are essential to guarantee the visibility of the modified state from one thread

to all others. In Java, every object has a built-in monitor associated with it. By convention, a thread

that needs exclusive and consistent access to an object's fields has to acquire the object's intrinsic

lock before accessing them, and then release the intrinsic lock when it's done with them. A thread is

said to own the intrinsic lock between the time when it has acquired the lock and the time before it

releases the lock. As long as a thread owns an intrinsic lock, no other thread can acquire the same

lock. The other thread will block when it attempts to acquire the lock. When a thread releases an

intrinsic lock, a happens-before relationship is established between that action and any subsequent

acquisition of the same lock.

▪ The volatile keyword: The Java programming language has the volatile keyword, which can be

applied to a field to guarantee that there is a global ordering on the reads and writes to a volatile

variable. There are two implications associated with a volatile variable: (1) the compiler should not

apply optimizations to a volatile variable, and (2) a thread should fetch a volatile variable’s value

from memory instead of from cache for every access. In Java 5 or later, volatile reads and writes

establish a happens-before relationship, much like acquiring and releasing a mutex. However, it may

not work as intended in some situations; therefore, exercise caution when you use a volatile variable

with your application.

▪ Thread.start(): Causes the thread to begin execution; the Java Virtual Machine calls the run

method of the thread.

▪ Thread.sleep(long millis): Causes the currently executing thread to sleep (temporarily cease

execution) for the specified number of milliseconds.

▪ Thread.join(): The calling thread waits until the called thread terminates.

We will dive into the above mechanisms in detail throughout the remainder of this text. For the time

being, you can get a glimpse of why the above issues arise by understanding the various states that a Java

thread might be in at any given point of time, which is the subject of the next section.

1.4.2 All Possible States for a Java Thread

Figure 1.2 shows the various states that a thread might be in at any given point of time, such as:

▪ NEW: Created but not started to run yet.

▪ RUNNABLE: Currently executing or waiting in the run queue for its turn to execute when it gains

access to the CPU. The thread is either ready to be scheduled to run or running.

▪ BLOCKED: Suspended for waiting to acquire a monitor lock.

▪ WAITING: Suspended indefinitely caused when the non-timeout versions of Object.wait() or

Thread.join() or LockSupport.park() (to be covered later) are called. Will be woken up when

another thread calls notify()/notifyAll().

▪ TIMED_WAITING: Suspended for a specified period, for example, caused when the following

methods are called:

 sleep(sleepTime)

 wait(timeout)

 join(timeout)

12 JAVA CONCURRENT PROGRAMMING: A QUANTITATIVE APPROACH

 LockSupport.parkNanos()

 LockSupport.parkUntil()

▪ TERMINATED: Reached the end of its life and exited.

It’s important to remember that a thread can be in only one state at a given point in time. In addition,

those states are Java virtual machine states rather than any operating system thread states.

Next, we describe common situations, such as livelock, starvation and deadlock, to avoid when

designing and coding concurrent programs.

Note: BLOCKED versus WAITING. It might be obvious what the states of NEW, RUNNABLE and

TERMINATED mean. However, there is a subtle difference between BLOCKED and WAITING:

BLOCKED means waiting synchronously to acquire a lock, while WAITING means that the thread has

gone into asleep and will wake up when notified asynchronously or timeout expires.

Figure 1.2 Possible states of a thread

1.4.3 Livelock, Starvation and Deadlock

Waiting over

Waiting

Waiting over

Waiting

NEW

TERMINATED

BLOCKED

WAITING

Waiting for lock

Lock acquired
TIMED_WAITING

RUNNABLE

Ready

Running

CHAPTER 1: MULTITHREADED PROGRAMMING IN JAVA 13

Livelock, starvation and deadlock are important concepts to be aware of for current programming. They

differ in that:

▪ Livelock: Both threads are attempting to access the same resource at the same time to get their work

done but unable to make progress. The situation is similar to two persons facing each other and

moving to the same direction to yield to the other party.

▪ Starvation: Describes a situation where one thread grabs and uses the resource solely, making one or

more threads have no chance to gain regular access to the shared resource and be unable to make

progress. In this case, only one thread – the greedy thread – can make progress. One should avoid

starvation as much as possible.

▪ Deadlock: Describes a situation where two or more threads are blocked forever, waiting for each

other to release the resource.

We will show examples of livelock, starvation and deadlock later in this chapter. Next, we describe how

to create a Java thread.

1.5 CREATING A THREAD

In Java, you can create a thread by one of the following two ways:

▪ implementing the Runnable interface

▪ extending the Thread class

The Runnable interface is incredibly simple. It is as simple as shown in Listing 1.4, with only one

public method named run, which has no arguments and does not return a result.

Listing 1.4 Runnable.java

36 package java.lang;
37 public interface Runnable {
38 public void run();
39 }

As is seen, if you need to create a class with potentially many instances for executing certain tasks, all

you need to do is to create a class that implements the Runnable interface, with the intended tasks coded

in the run() method. This interface is meant to be a common construct for objects to execute code while

they are active until they are stopped. Runnable is lightweight and is particularly suitable for defining

computational tasks, as will be demonstrated throughout this text.

Listing 1.5 shows the Thread class definition, extracted from its actual implementation as of JDK 1.7u75

– the last update of JDK 7 as of this writing. The entire implementation is 2058 lines long, including

comments, which is too lengthy to be fully listed here. Even with this partial listing, we can see:

▪ Lines 3 – 17: What classes the Thread class depends on, such as Reference, ReferenceQueue,

AccessController, Map, HashMap, ConcurrentHashMap, LockSupport, Interruptible, and so on.

▪ Line 19: The Thread class implements the Runnable interface.

▪ Lines 21 – 23: Fields such as name, priority, and threadQ, and so on.

14 JAVA CONCURRENT PROGRAMMING: A QUANTITATIVE APPROACH

▪ Lines 26 – 30: Fields such as threadLocals, stackSize, tid for Thread ID, threadStatus, and so

on.

▪ Lines 32 – 34: How the synchronized keyword is used to guard incrementing the threadSeqNumber

field.

▪ Line 36: How the volatile keyword is used to guard the blocker variable of type Interruptible.

▪ Lines 37 – 43: How the synchronized and volatile keywords are used together to synchronize the

blockerOn method.

▪ Lines 47 – 61: The sleep(...) method and init (...) method

▪ Lines 64 – 69: Some private helper methods related to operations such as setPriority, stop,

suspend, resume, interrupt, and setNativeName.

Note that the purpose here is not to help you get some immediate and deep understanding of how the

Java Thread class is actually coded. Instead, even with this partial list, you could get a glimpse of many

of the multithreading concepts wired into the Java Thread class implementation.

Listing 1.5 Thread.java (partial)

1 package java.lang;

2

3 import java.lang.ref.Reference;

4 import java.lang.ref.ReferenceQueue;

5 import java.lang.ref.WeakReference;

6 import java.security.AccessController;

7 import java.security.AccessControlContext;

8 import java.security.PrivilegedAction;

9 import java.util.Map;

10 import java.util.HashMap;
11 import java.util.concurrent.ConcurrentHashMap;
12 import java.util.concurrent.ConcurrentMap;
13 import java.util.concurrent.locks.LockSupport;
14 import sun.nio.ch.Interruptible;
15 import sun.reflect.CallerSensitive;
16 import sun.reflect.Reflection;
17 import sun.security.util.SecurityConstants;
18
19 public class Thread implements Runnable {
20
21 private char name[];
22 private int priority;
23 private Thread threadQ;
24 private long eetop;
25
26 ThreadLocal.ThreadLocalMap threadLocals = null;
27 ThreadLocal.ThreadLocalMap inheritableThreadLocals = null;
28 private long stackSize;
29 private long tid; // Thread ID
30 private volatile int threadStatus = 0;
31
32 private static synchronized long nextThreadID() {

CHAPTER 1: MULTITHREADED PROGRAMMING IN JAVA 15

33 return ++threadSeqNumber;
34 }
35
36 private volatile Interruptible blocker;
37 private final Object blockerLock = new Object();
38
39 void blockedOn(Interruptible b) {
40 synchronized (blockerLock) {
41 blocker = b;
42 }
43 }
44
45 public static native Thread currentThread();
46
47 public static void sleep(long millis, int nanos)
48 throws InterruptedException { // ...}
49
50 private void init(ThreadGroup g, Runnable target, String name,
51 long stackSize, AccessControlContext acc) {
52 if (name == null) {
53 throw new NullPointerException("name cannot be null");
54 }
55
56 this.name = name.toCharArray();
57
58 Thread parent = currentThread();
59 SecurityManager security = System.getSecurityManager();
60 // ...
61 }
62
63 /* Some private helper methods */
64 private native void setPriority0(int newPriority);
65 private native void stop0(Object o);
66 private native void suspend0();
67 private native void resume0();
68 private native void interrupt0();
69 private native void setNativeName(String name);
70 // other methods are omitted

71 }

A thread is an isolated execution unit in a program. Every thread has a priority. Threads with higher

priorities are executed in preference to threads with lower priorities. In addition, a thread may be marked

as a daemon. The Java Virtual Machine allows an application to have multiple threads to run

concurrently. When a Java Virtual Machine starts up, there is usually a single non-daemon thread. The

Java Virtual Machine continues to execute threads until either of the following occurs:

▪ The exit method of the class Runtime has been called and the security manager has permitted the

exit operation to take place.

▪ All non-daemon threads have exited, either by returning from the call to the run method or by

throwing an exception that propagates beyond the run method.

16 JAVA CONCURRENT PROGRAMMING: A QUANTITATIVE APPROACH

Before showing some actual examples of creating Java threads, I’d like to call your attention to the two

more methods of the Thread class, start() and run(), as shown in Listings 1.6 and 1.7. The start()

method starts up a thread while the run() method initiates the thread to execute the tasks defined in the

run() method immediately. It’s interesting to see from line 1 of Listing 1.6 that the start() method of a

thread itself is synchronized.

Listing 1.6 The start method of the Thread class

1 public synchronized void start() {

2 if (threadStatus != 0)

3 throw new IllegalThreadStateException();

4

5 /* Notify the group that this thread is about to be started

6 * so that it can be added to the group's list of threads

7 * and the group's unstarted count can be decremented. */

8 group.add(this);

9

10 boolean started = false;
11 try {
12 start0();
13 started = true;
14 } finally {
15 try {
16 if (!started) {
17 group.threadStartFailed(this);
18 }
19 } catch (Throwable ignore) {
20 /* do nothing */
21 }
22 }
23 }
24
25 private native void start0();

Listing 1.7 The run method of the Thread class

26 public void run() {
27 if (target != null) {
28 target.run();
29 }
30 }

Regarding the run() method of the Thread class as shown in Listing 1.7, if the thread was constructed

using a separate Runnable run object, then that Runnable object’s run method is called; otherwise, the

run method does nothing and returns. Refer to Figure 1.3, taken from the JDK7u75 source project

imported onto my Eclipse IDE, for other fields and methods for the Thread class. Note the symbol next

to each entry, such as S for static, E for enum, I for interface, V for volatile, C for constructor, F

for final, and N for native. You can learn a lot just by going through all entries by their names, which

are indicative of what they are meant for. For example, look under the enum State for BLOCKED, NEW,

CHAPTER 1: MULTITHREADED PROGRAMMING IN JAVA 17

RUNNABLE, TERMNINATED, TIMED_WAITING and WAITING, which correspond to the Java thread states

shown in Figure 1.2.

(a) (b)

18 JAVA CONCURRENT PROGRAMMING: A QUANTITATIVE APPROACH

(c) (d)

Figure 1.3 Fields and methods for the Thread class

From Figure 1.3, you can also notice what constructors are available for creating a Thread object. Here

is a summary of all seven constructors:

1. Thread(): Allocates a new, anonymous Thread object.

2. Thread(Runnable target): Allocates a new, anonymous Thread object from a Runnable target.

3. Thread(Runnable target, String name): Allocates a new Thread object with a Runnable target

and with a given name.

CHAPTER 1: MULTITHREADED PROGRAMMING IN JAVA 19

4. Thread(ThreadGroup group, Runnable target): Allocates a new Thread object with a given

ThreadGroup and a given Runnable target.

5. Thread(ThreadGroup group, Runnable target, String name): Allocates a new Thread object

with a given ThreadGroup, a given Runnable target and a given name.

6. Thread(ThreadGroup group, Runnable target, String name, long stackSize): Allocates a

new Thread object with a given ThreadGroup, a given Runnable target, a given name, and a

specified stack size.

7. Thread(ThreadGroup group, String name): Allocates a new Thread object with a given

ThreadGroup and a given name.

Notice the arguments you can pass into a constructor, essentially as a combination of the parameters such

as a Runnable object, a name, and a ThreadGroup object, etc. This will become clear after we show the

creating thread examples next. The option 3 with a given Runnable target and a given name is the most

common one, though, as demonstrated in the next section.

Next, we show how to create threads by implementing the Runnable interface or by extending the

Thread class.

Note: When to use Runnable or Thread. In most cases, the Runnable interface should be used if

you are only planning to override the run() method and no other Thread methods. This is important

because classes should not be subclassed unless the programmer intends to modify or enhance the

fundamental behavior of the class.

1.5.1 Implements Runnable

Listing 1.8(a) shows how a new thread can be defined by implementing the Runnable interface. It

follows the below procedure:

1. Line 2: Declares a thread variable t.

2. Lines 4 – 9: Define a constructor, within which, a Thread object is instantiated using the Thread

class’s constructor of Thread (Runnable target, String name) as introduced in the

preceding section. Here the Runnable target is the instance itself as designated as “this” and

the name is “New Thread.” Then, at line 8, the start () method is called to start the thread.

3. Lines 12 -22: Define the run method, which contains a for-loop that loops three times to print a

message after sleeping for one second each time. The for-loop is wrapped in a try-catch block

to capture InterruptedException.

This example shows how one can create a simple Java thread by implementing the Runnable interface.

Next, we describe the driver class.

Listing 1.8(a) NewThread.java

1 class NewThread implements Runnable {

2 Thread t;

3

20 JAVA CONCURRENT PROGRAMMING: A QUANTITATIVE APPROACH

4 NewThread() {

5 // Create a new thread

6 t = new Thread(this, "New Thread");

7 System.out.println("Child thread: " + t);

8 t.start(); // Start the thread in the constructor

9 }

10
11 // The run method for the new thread

12 public void run() {

13 try {

14 for (int i = 3; i > 0; i--) {

15 System.out.println("Child Thread: " + i);

16 Thread.sleep(1000);

17 }

18 } catch (InterruptedException e) {

19 System.out.println("Child interrupted.");

20 }

21 System.out.println("Exiting child thread.");

22 }

23 }

Listing 1.8(b) is a regular Java class for testing the NewThread class as shown in Listing 1.8(a). At line 3,

it simply creates a NewThread object without calling its start method, which is already coded in the

constructor of the NewThread class as shown at line 8 in Listing 1.8(a). Then, lines 5 – 12 set up a for-

loop that loops five times, each of which prints a message and then sleeps for one second prior to the

next iteration.

When the MainThread object is executed, it starts up a NewThread object at line 3 and then moves on to

execute its own code – mostly the for-loop from line 6 to 9. Now, as we have set up two threads to take

turns to get access to CPUs and execute (which would do time-slicing as we described previously), we

should explore how they would go each time the MainThread class is run. Figure 1.4 shows the result:

The left screenshot and the right screenshot show the sequences of executions interleaved between the

main and the child thread out of two separate runs, respectively. As you see, the sequences are different

between the first and second runs: The first run had the sequence of 5, 3, 4, 2, 1, 3, ... while the second

run had the sequence of 5, 3, 4, 2, 3, 1, ..., with the sub-sequence of 1, 3 swapped between the main and

child threads during the second run. This simple example demonstrates exactly the problems that may

arise with multithreaded programming: One cannot assume that multiple threads would execute by

following a deterministic sequence; and therefore their operations must be coordinated properly to

achieve predictable results every time they are executed.

Next, we demonstrate how to create a thread by extending the Thread class.

Listing 1.8(b) MainThread.java

1 class MainThread {

2 public static void main(String args[]) {

3 new NewThread(); // create a new thread

4

5 try {

CHAPTER 1: MULTITHREADED PROGRAMMING IN JAVA 21

6 for (int i = 5; i > 0; i--) {

7 System.out.println("Main Thread: " + i);

8 Thread.sleep(1000);

9 }

10 } catch (InterruptedException e) {

11 System.out.println("Main thread interrupted.");

12 }

13 System.out.println("Main thread exiting.");

14 }

15 }

Figure 1.4 Main and child threads with un-deterministic sequence of executions

1.5.2 Extends Thread

Listing 1.9(a) shows how a new thread can be defined by extending the Thread class. It follows the

below procedure:

1. Lines 2 - 7: Since it extends the Thread class instead of implementing the Runnable interface, it

does not need to declare a thread variable t, as was the case with the preceding example shown

in Listing 1.8(a). Instead, it starts with defining a constructor straightforwardly, within which,

the super method is called with a thread name, and then the start() method is called to start

the thread.

2. Lines 10 – 20: Define the run method, which is identical to the preceding example that it

contains a for-loop that loops three times to print a message after sleeping for one second each

time. The for-loop is wrapped in a try-catch block to capture InterruptedException

associated with the sleep method.

This example shows how one can create a simple Java thread by extending the Thread class. Next, we

describe the driver class.

Listing 1.9(a) ExtendedThread.java

1 public class ExtendedThread extends Thread {

2 ExtendedThread () {

3 // Create a new thread

4 super("ExtendedThread");

5 System.out.println("Child thread: " + this);

6 start(); // Start the thread in the constructor

22 JAVA CONCURRENT PROGRAMMING: A QUANTITATIVE APPROACH

7 }

8

9 // The run method for the new thread.

10 public void run() {

11 try {

12 for (int i = 3; i > 0; i--) {

13 System.out.println("Child Thread: " + i);

14 Thread.sleep(1000);

15 }

16 } catch (InterruptedException e) {

17 System.out.println("Child interrupted.");

18 }

19 System.out.println("Exiting child thread.");

20 }

21 }

Listing 1.9(b) is a regular Java class, named MainThread2, for testing the ExtendedThread class as

shown in Listing 1.9(a). At line 3, it simply creates an ExtendedThread object without calling its start

method, which is already coded in the constructor of the ExtendedThread class as shown at line 6 in

Listing 1.9(a). Then, lines 5 – 12 set up a for-loop that loops five times, each of which prints a message

and then sleeps for one second prior to the next iteration.

When the MainThread2 is executed, it starts up an ExtendedThread object at line 3 and then moves on

to execute its own code – mostly the for-loop from line 6 to 9. Similar to the preceding example, as we

have set up two threads to take turns to get access to CPUs and execute, we explore how they would go

each time when MainThread2 is run. Figure 1.5 shows the result: This time, it took four runs in my

environment in order to see a different sequence of executions between the main and the child threads

from start to finish. Once again, this simple example demonstrates that one cannot assume that multiple

threads would execute by following a deterministic sequence, and therefore their operations must be

coordinated properly to achieve predictable results every time they are executed.

I hope you have been convinced that threads need to be coordinated properly for their operations to yield

predictable results no matter how many times when they are executed. The next section demonstrates

how that can be done by synchronizing the operations of multiple threads by using the synchronized

keyword made available since Java 1.

Listing 1.9(b) MainThread2.java

1 class MaindThread2 {

2 public static void main(String args[]) {

3 new ExtendedThread(); // create a new thread

4

5 try {

6 for (int i = 5; i > 0; i--) {

7 System.out.println("Main Thread: " + i);

8 Thread.sleep(1000);

9 }

10 } catch (InterruptedException e) {

11 System.out.println("Main thread interrupted.");

CHAPTER 1: MULTITHREADED PROGRAMMING IN JAVA 23

12 }

13 System.out.println("Main thread exiting.");

14 }

15 }

Figure 1.5 Sequences interleaved between the main and child threads out of four runs: one is different

from the other three

1.6 SYNCHRONIZATION

As you’ve seen from lines 32 – 43 from Listing 1.5, as copied over here as shown below, one can

synchronize a method (lines 32 – 34) or a block of code (lines 40 – 42) by applying the synchronized

keyword. In both cases, there is an implicit lock associated with every Java object; and when a method or

a block is synchronized, that implicit monitor lock will work behind the scene. In this section, we use

two examples to demonstrate these two different synchronization approaches.

32 private static synchronized long nextThreadID() {
33 return ++threadSeqNumber;
34 }
35
36 private volatile Interruptible blocker;
37 private final Object blockerLock = new Object();
38
39 void blockedOn(Interruptible b) {
40 synchronized (blockerLock) {
41 blocker = b;
42 }
43 }

1.6.1 Synchronized Methods

24 JAVA CONCURRENT PROGRAMMING: A QUANTITATIVE APPROACH

This section provides an example to demonstrate how multiple Java threads that share a resource can be

coordinated by using the synchronized keyword available since Java 1. The example consists of three

classes as shown in Listings 1.10(a), (b) and (c), respectively. The function of each class is described as

follows:

▪ Messager.java [Listing 1.10(a)]. This is a regular Java class, meaning that it does not implement the

Runnable interface or extend the Thread class. It simply outputs a given message flanked by a left

arrow bracket and a right arrow bracket. The sendMessage(String msg) method has a

Thread.sleep (1000) statement, which puts the thread into sleep for one second each time when

it’s called. Keep in mind that each thread will have its own copy of the Messager object instance, so

some chaotic behavior might occur to those Messager object instances if they were not synchronized.

▪ MessageThread.java [Listing 1.10(b)]. This is a Java thread class that implements the Runnable

interface. As expected, it implements the run() method, within which the target Messager object’s

sendMessage method is called with a given message.

▪ SynchTest0.java [Listing 1.10(c)]. This is the driver class that tests the above two classes. It creates

a Messager object instance, which will be passed to three threads of type MessageThread, with a

message passed in together for each thread to send.

As shown in Listing 1.10(c), the three threads are supposed to send the messages of “Java”,

“Concurrent” and “Programming”, respectively, with each message to be flanked by “<” and “>”,

respectively, as well. However, without synchronizing the Messager object, as indicated by line 2

commented out in Listing 1.10(a), the output of running the SynchTest0 class as shown in Listing

1.10(c) would look like the following:

<Java<Concurrent<Programming>
>
>

Now, after un-commenting line 2 and commenting out line 3 in Messager.java shown in Listing

1.10(a), the output of running the same SynchTest0.java class would look like the following:

<Java>
<Programming>
<Concurrent>

or

<Concurrent>
<Java>
<Programming>

Namely, each message is flanked properly, although the sequence of the messages may differ, which is

acceptable as long as the integrity of each thread is preserved.

Next, we demonstrate how to use synchronized blocks or statements to achieve the same purpose.

Listing 1.10(a) Messager.java

1 public class Messager {

CHAPTER 1: MULTITHREADED PROGRAMMING IN JAVA 25

2 //synchronized void sendMessage (String msg) {

3 void sendMessage (String msg) {

4 System.out.print("<" + msg);

5 try {

6 Thread.sleep(1000);

7 } catch (InterruptedException e) {

8 System.out.println("Interrupted: " + e.getStackTrace());

9 }

10 System.out.println(">");

11 }

12 }

Listing 1.10(b) MessageThread.java

1 class MessageThread implements Runnable {

2 String msg;

3 Messager target;

4 Thread t;

5

6 public MessageThread(Messager targ, String s) {

7 target = targ;

8 msg = s;

9 t = new Thread(this);

10 t.start();

11 }

12
13 public void run() {

14 target.sendMessage (msg);

15 }

16 }

Listing 1.10(c) SynchTest0.java

1 public class SynchTest0 {

2 public static void main(String args[]) {

3 Messager target = new Messager();

4 MessageThread messager1 = new MessageThread(target, "Java");

5 MessageThread messager2 = new MessageThread(target, "Concurrent");

6 MessageThread messager3 = new MessageThread(target, "Programming");

7

8 // wait for threads to end by calling the join () method

9 try {

10 messager1.t.join();

11 messager2.t.join();

12 messager3.t.join();

13 } catch (InterruptedException e) {

14 System.out.println("Interrupted");

15 }

16 }

17 }

26 JAVA CONCURRENT PROGRAMMING: A QUANTITATIVE APPROACH

1.6.2 Synchronized Blocks

In order to show how to synchronize a block of code rather than a method, I simply copied the three

classes introduced in the preceding section and renamed them from Messager.java to Messager1.java,

from MessageThread.java to MessageThread1.java, and SynchTest0.java to SynchTest1.java, as

shown in Listings 1.11(a), (b) and (c), respectively. Unlike the previous version, notice that the shared

Messager1.java class has no synchronized keyword applied to its sendMessage method. Instead, the

synchronized keyword is applied to the target object in the run method of the MessageThread1.java

class, which surrounds the statement of target.sendMessage (msg) as shown from lines 14 – 16 in

Listing 1.11(b) MessageThread1.java.

If you run SynchTest1.java class as shown in Listing 1.11 (c), you should get an output similar to the

following:

<Java>
<Programming>
<Concurrent>

Namely, each message was flanked by “<” and “>” as expected. As you see, we can apply

synchronization either at the shared resource level or at the thread level. From the programming point of

view, synchronizing a method is simpler than synchronizing a block; and in many cases, the two

approaches might be equivalent in terms of performance. However, when it comes to the scope of

locking, synchronizing a block should be considered first, as noted below.

Note: Synchronizing methods versus synchronizing blocks: which one should be used? One

should in general favor synchronizing blocks over synchronizing methods, as the former generally

reduces scope of lock, which is beneficial for performance. Put it another way, it’s always a better choice

to lock only a critical section of code rather than an entire method. With a synchronized method, the lock

is acquired by the thread when it enters the method and released when it leaves the method, whereas with

a synchronized block, the thread acquires the lock only when it enters the synchronized block and

releases the lock as soon as it leaves the synchronized block.

In addition, one can synchronize different blocks using different lock objects within a method, if

necessary, which is unachievable when an entire method is synchronized. Therefore, synchronizing a

block provides extra finer granularity when needed.

Listing 1.11(a) Messager1.java

1 public class Messager1 {

2 void sendMessage (String msg) {

3 System.out.print("<" + msg);

4 try {

5 Thread.sleep(1000);

6 } catch (InterruptedException e) {

7 System.out.println("Interrupted: " + e.getStackTrace());

CHAPTER 1: MULTITHREADED PROGRAMMING IN JAVA 27

8 }

9 System.out.println(">");

10 }

11 }

Listing 1.11(b) MessageThread1.java

1 class MessageThread1 implements Runnable {

2 String msg;

3 Messager1 target;

4 Thread t;

5

6 public MessageThread1(Messager1 targ, String s) {

7 target = targ;

8 msg = s;

9 t = new Thread(this);

10 t.start();

11 }

12
13 public void run() {

14 synchronized (target) { // synchronized block

15 target.sendMessage(msg);

16 }

17 }

18 }

Listing 1.11(c) SynchTest1.java

1 public class SynchTest1 {

2 public static void main(String args[]) {

3 Messager1 target = new Messager1();

4 MessageThread1 messager1 = new MessageThread1(target, "Java");

5 MessageThread1 messager2 = new MessageThread1(target, "Concurrent");

6 MessageThread1 messager3 = new MessageThread1(target, "Programming");

7

8 // wait for threads to end by calling the join () method

9 try {

10 messager1.t.join();

11 messager2.t.join();

12 messager3.t.join();

13 } catch (InterruptedException e) {

14 System.out.println("Interrupted");

15 }

16 }

17 }

1.7 INTER-THREAD COMMUNICATIONS

As we emphasized earlier, executions of threads often have to be coordinated in order to achieve

deterministic results. In order to program coordination among threads, some kind of inter-thread

28 JAVA CONCURRENT PROGRAMMING: A QUANTITATIVE APPROACH

communication mechanisms are called for. This section explores some options for coordinating threads,

from very primitive ones such as busy-wait or busy-spin, to advanced ones such as wait(), notify()

(which wakes up only one thread) and notifyAll() (which wakes up all threads – more efficient if

many threads are waiting for the same lock).

Let’s begin with explaining the concept of busy-wait or busy-spin next.

1.7.1 Busy Wait / Busy Spin

Busy wait or busy spin means the same thing: A process or a thread runs in an infinite loop, checking

repeatedly if a certain condition has become true; and if the condition that it is waiting for becomes true,

it gets out of the infinite loop and continues. For example, the following code snippet does busy wait:

1 private boolean happened;

2 // ...

3 while (!happened) {} // busy wait here – waste of CPU time

4 System.out.println (“It has just happened!”);

5 // do something else

Apparently, the above “do nothing” loop deprives other threads of access to CPUs and thus wastes

valuable CPU times. In general, busy-wait is considered an anti-pattern and should be avoided as much

as possible.

It’s possible to alleviate the CPU wasting impact that a busy-wait incurs by letting the running thread

sleep for a fixed period between consecutive condition-checking operations. For example, we can modify

line 3 in the above code snippet into the following:

3 while (!happened) {Thread.sleep (100);}

, which puts the running thread to sleep for 100 milliseconds before the next iteration starts. If the sleep

time is significantly longer than the time for checking the state of the condition variable, the running

thread will spend most of its time asleep and wastes very little CPU time.

However, an alternative like putting the running thread to sleep for a fixed period still is not a very

flexible and elegant solution to the busy-wait problem. Since its earlier versions, Java has provided

formal constructs for coordinating inter-thread communications. In the next section, we describe how

such constructs can help coordinate thread executions effectively and efficiently.

1.7.2 A Simple Buffer Accessed by a Single Thread

Let’s start with the simplest case: a simple buffer to be accessed by a single thread only. As shown in

Listing 1.12(a), this SimpleBuffer has two fields, a constructor and two methods as explained below:

▪ An integer array named buffer to be used as an integer number container

▪ An integer field named currIndex, which designates the current array element available for storing a

new element

▪ A constructor for allocating memory for the array with a given capacity as well as for initializing the

currIndex field to zero

CHAPTER 1: MULTITHREADED PROGRAMMING IN JAVA 29

▪ A method named put(int i) that stores the given value of i at the currently available array

element. Note the post-increment operation in currIndex++ at line 13 that bumps the current index

to the next available array element in one statement.

▪ A method named get() that retrieves the latest array element located at the end of the array. This is

similar to a last-in-first-out (LIFO) data structure like a Stack, but that’s not important for the time

being. Eventually, we’ll change it into a first-in-first-out (FIFO) data structure like a Queue as will be

discussed later. In addition, note the pre-decrement operation in --currIndex at line 17 that moves

the index pointer back to the position that contains the last value stored in the buffer.

Next, we describe a single-threaded program that accesses this simple buffer.

Listing 1.12(a) SimpleBuffer.java

1 package jcp.ch1.buffer.v0;

2

3 public class SimpleBuffer {

4 private final int[] buffer;

5 private int currIndex;

6

7 SimpleBuffer(int capacity) {

8 this.buffer = new int[capacity];

9 this.currIndex = 0;

10 }

11
12 final void put(int i) {

13 buffer[currIndex++] = i;

14 }

15
16 final int get() {

17 return buffer[--currIndex];

18 }

19 }

Listing 1.12(b) shows a SimpleBufferTest Java class that does the following:

▪ Lines 6 - 7: Initialize the capacity parameter for the buffer to 10 and create a SimpleBuffer object

with that capacity accordingly.

▪ Lines 10 – 13: Fill the buffer up to the capacity as specified above by calling the simpleBuffer

object’s put method.

▪ Lines 15 – 18: Get (remove and return) the element of the integer array buffer one by one in the

LIFO order by calling the simpleBuffer object’s get method.

Running this simple example would result in the following output:

SimpleBuffer: put 0 1 2 3 4 5 6 7 8 9
SimpleBuffer: get 9 8 7 6 5 4 3 2 1 0
done

As you see, nothing surprises us when the above buffer is accessed by a single thread. Next, we’ll see

immediately what would happen if the above simple buffer were accessed by two threads concurrently.

30 JAVA CONCURRENT PROGRAMMING: A QUANTITATIVE APPROACH

Listing 1.12(b) SimpleBufferTest.java

1 package jcp.ch1.buffer.v0;

2

3 public class SimpleBufferTest {

4 public static void main(String args[]) {

5

6 int capacity = 10;

7 SimpleBuffer simpleBuffer = new SimpleBuffer(capacity);

8

9 System.out.print("SimpleBuffer: put");

10 for (int i = 0; i < capacity; i++) {

11 simpleBuffer.put(i);

12 System.out.print(" " + i);

13 }

14
15 System.out.print("\nSimpleBuffer: get");

16 for (int i = 0; i < capacity; i++) {

17 System.out.print(" " + simpleBuffer.get());

18 }

19 System.out.print("\ndone");

20 }

21 }

1.7.3 The Simple Buffer Accessed by Two Threads: Busy-Wait with no Conditional

Check (OOB)

For the same simple buffer as shown in Listing 1.12(a), let’s set up two threads to access it concurrently:

one named Producer.java as shown in Listing 1.13(a) for filling the buffer by calling its put method

and the other named Consumer.java as shown in Listing 1.13(b) for consuming the buffer by calling its

get method. Take a moment and examine how the constructor for each class is coded: First, the

simpleBuffer field is initialized with the simpleBuffer object passed-in, and then a new thread is

created with its start method called.

As you see from the following two listings, the run method of the Producer class, shown from lines 14

– 16 in Listing 1.13(a), uses an infinite while-loop to keep filling the buffer by calling its put method.

On the other hand, the run method of the Consumer class, shown from lines 11 – 14 in Listing 1.13(b),

uses an infinite while-loop to keep emptying the buffer by calling its get method.

Listing 1.13(a) Producer.java

1 package jcp.ch1.buffer.v1;

2

3 class Producer implements Runnable {

4 SimpleBuffer simpleBuffer;

5

6 Producer(SimpleBuffer simpleBuffer) {

7 this.simpleBuffer = simpleBuffer;

CHAPTER 1: MULTITHREADED PROGRAMMING IN JAVA 31

8 new Thread(this, "Producer").start();

9 }

10
11 public void run() {

12 int i = 0;

13
14 while (true) {

15 simpleBuffer.put(i++);

16 }

17 }

18 }

Listing 1.13(b) Consumer.java

1 package jcp.ch1.buffer.v1;

2

3 public class Consumer implements Runnable {

4 SimpleBuffer simpleBuffer;

5

6 Consumer(SimpleBuffer simpleBuffer) {

7 this.simpleBuffer = simpleBuffer;

8 new Thread(this, "Consumer").start();

9 }

10
11 public void run() {

12 while (true) {

13 simpleBuffer.get();

14 }

15 }

16 }

Listing 1.13(c) shows the test driver. It creates a 10-element SimpleBuffer object and passes it to the

Producer and Consumer threads. We do not have to call the start method for each thread in the test

driver, as it’s already coded into the constructor of each thread class. Now, if you just ran the test driver

with the SimpleBuffer class as shown in Listing 1.12(a) with no modifications, you would quickly get

an OutOfBounds (OOB) exception or ArrayIndexOutOfBoundsException as shown below:

Exception in thread "Producer" Exception in thread "Consumer" java.lang.ArrayIndexOutOfBoundsException: 10
 at jcp.ch1.buffer.v1.SimpleBuffer.put(SimpleBuffer.java:13)
 at jcp.ch1.buffer.v1.Producer.run(Producer.java:15)
 at java.lang.Thread.run(Thread.java:744)
java.lang.ArrayIndexOutOfBoundsException: 10
 at jcp.ch1.buffer.v1.SimpleBuffer.get(SimpleBuffer.java:17)
 at jcp.ch1.buffer.v1.Consumer.run(Consumer.java:13)
 at java.lang.Thread.run(Thread.java:744)

That’s because the SimpleBuffer class shown in Listing 1.12(a) does not check full and empty

conditions: A buffer should array not be attempted for filling when it’s full and it should not be

attempted for retrieving when it’s empty. The next section describes how to add such conditional checks.

Listing 1.13(c) SimpleBufferTest.java

32 JAVA CONCURRENT PROGRAMMING: A QUANTITATIVE APPROACH

1 package jcp.ch1.buffer.v1;

2

3 public class SimpleBufferTest {

4 public static void main(String args[]) {

5 SimpleBuffer simpleBuffer = new SimpleBuffer (10);

6 new Producer(simpleBuffer);

7 new Consumer(simpleBuffer);

8 }

9 }

1.7.4 The Simple Buffer Accessed by Two Threads: Busy-Wait with Conditional

Check but no Synchronization (Livelock)

Listing 1.13(d) shows a new version of the SimpleBuffer class that checks full and empty conditions. In

addition, it uses busy-wait on the above two conditions as shown from lines 13 – 14 for the put method

and from lines 22 - 23 for the get method, respectively. Note also that in the put method, we have

separated the index post-increment operation out of the buffer filling operation, while in the get method,

we have separated the value to be returned from the removing operation as well. The latter is especially

necessary, as we need to decrement the current index before returning the value.

So what would happen if we execute the test driver shown in Listing 1.13(c) with the modified

SimpleBuffer shown in Listing 1.13(d)? In fact, as shown in Figure 1.6, a livelock situation had

occurred. In that case, the consumer was attempting to get the first element indexed at 0 while the

producer was attempting to fill the last element indexed at 9; note the colored square at the upper right

corner, indicating that the program was still running.

Listing 1.13(d) SimpleBuffer.java

1 package jcp.ch1.buffer.v1;

2

3 public class SimpleBuffer {

4 private final int[] buffer;

5 private int currIndex;

6

7 SimpleBuffer(int capacity) {

8 this.buffer = new int[capacity];

9 this.currIndex = 0;

10 }

11
12 final void put(int i) {

13 while (isFull()) {

14 }

15 buffer[currIndex] = i;

16 System.out.println(Thread.currentThread().getName() + ": put " + i

17 + " at " + currIndex);

18 currIndex++;

19 }

20
21 final int get() {

CHAPTER 1: MULTITHREADED PROGRAMMING IN JAVA 33

22 while (isEmpty()) {

23 }

24
25 int value = buffer[--currIndex];

26 System.out.println(Thread.currentThread().getName() + ": get " + value

27 + " at " + currIndex);

28 return value;

29 }

30
31 final boolean isFull() {

32 return currIndex == buffer.length;

33 }

34
35 final boolean isEmpty() {

36 return currIndex == 0;

37 }

38 }

Figure 1.6 Livelock that occurred with the busy-wait/unsynchronized SimpleBuffer example

1.7.5 Detecting Locking Issues

How can we detect a livelock or any locking issues in general? The jvisualvm tool can help. This is my

favorite Java profiling tool, which comes free and bundled together with every JDK release.

You can start jvisualvm up by double-clicking on the jvisualvm.exe file in the bin directory of a JDK

install. Then, select the running Java process you want to profile and click on the Threads tab. Figure 1.7

shows the screenshot when the livelock occurred as described above on my Windows 8 laptop while the

preceding example was running. Notice the color-coded state for each thread under the Timeline tab:

Green for Running, Purple for Sleeping, Yellow for Wait and Red for Monitor. (You can find the colored

versions of images from this text’s website at http://www.perfmath.com/jcp/colored_images.pdf.) Then,

at the lower half of the panel, it clearly shows that the Consumer thread was executing line 22 while the

Producer thread was executing line 13 of the SimpleBuffer class shown in Listing 1.13(d), which

corresponds to the isFull while-loop in the put method and isEmpty while-loop in the get method,

respectively. As you see, this tool can help you pinpoint down exactly where in the Java source code a

livelock is happening.

http://www.perfmath.com/jcp/colored_images.pdf

34 JAVA CONCURRENT PROGRAMMING: A QUANTITATIVE APPROACH

Next, we describe what will happen if we add synchronization to all methods of the SimpleBuffer class

shown in Listing 1.13(d).

Figure 1.7 The states of the Producer and Consumer threads when a livelock occurred

1.7.6 The Simple Buffer Accessed by Two Threads: Busy-Wait with Conditional

Check and Synchronization (Starvation)

The previous example shows that the two threads livelocked with a version of the SimpleBuffer class

that implements busy-wait and conditional check but no synchronization. What happens if we modify

that SimpleBuffer class shown in Listing 1.13(d) to have synchronization added for both the put and

get methods. Listing 1.14 shows the modified version of the SimpleBuffer class, with the

CHAPTER 1: MULTITHREADED PROGRAMMING IN JAVA 35

synchronized keyword added to all four methods of the SimpleBuffer class. The Producer, Consumer

and test driver classes are not listed here, as they remain the same.

Listing 1.14 SimpleBuffer.java

1 package jcp.ch1.buffer.v2;

2

3 public class SimpleBuffer {

4 private final int[] buffer;

5 private int currIndex;

6

7 SimpleBuffer(int capacity) {

8 this.buffer = new int[capacity];

9 this.currIndex = 0;

10 }

11
12 final synchronized void put(int i) {

13 while (isFull()) {}

14 buffer[currIndex] = i;

15 System.out.println(Thread.currentThread().getName() + ": put " + i

16 + " at " + currIndex);

17 currIndex++;

18 }

19
20 final synchronized int get() {

21 while (isEmpty()) {}

22 int value = buffer[--currIndex];

23 System.out.println(Thread.currentThread().getName() + ": get " + value

24 + " at " + currIndex);

25 return value;

26 }

27
28 final synchronized boolean isFull() {

29 return currIndex == buffer.length;

30 }

31
32 final synchronized boolean isEmpty() {

33 return currIndex == 0;

34 }

35 }

Figure 1.8 shows the running state of this example on my Eclipse IDE, indicating that the producer was

stuck after filling the last element while the consumer was stuck after retrieving the first element. On the

other hand, Figure 1.9 shows the thread states on jvisualvm, indicating that the Consumer was running

(green color) while the Producer was blocked (red). The lower-half panel further indicates more

explicitly that the Consumer was in RUNNABLE state at isEmpty method while the Producer was in

BLOCKED state at the put method’s isFull method call.

36 JAVA CONCURRENT PROGRAMMING: A QUANTITATIVE APPROACH

Figure 1.8 The SimpleBuffer starvation situation: The Producer was stuck after filling the last element

while the consumer was stuck after retrieving the first element

Figure 1.9 Thread states in the starvation situation: One was in RUNNABLE state while the other was in

BLOCKED state permanently

Next, we’ll see how we can solve the livelock and starvation issues with guarded blocks and

asynchronous waiting.

CHAPTER 1: MULTITHREADED PROGRAMMING IN JAVA 37

1.7.7 Guarded Blocks with Asynchronous Waiting

Using the SimpleBuffer example, we demonstrated that:

▪ Busy-wait with no synchronization may result in livelock issues

▪ Busy-wait with synchronization may result in starvation issues

In this section, we demonstrate that guarded blocks with asynchronous waiting can resolve both the

livelock and starvation issues discussed in the preceding sections. Listing 1.15 shows the SimpleBuffer

class implemented with guarded blocks. Here, the try-wait-catch blocks in the put and get methods

are guarded by their while (isFull()) and while (isEmpty()) loops, respectively. It is imperative

to get rid of busy-waits as they do not only waste CPU time but also result in livelock and starvation

issues. In addition, it’s known that spurious wakeups may occur for no reasons, namely, a producer or

consumer thread might wake up and only find out that the buffer still is full or empty, in which case, it

goes back to sleep again.

Observe the following steps when implementing a guarded block:

1. First, synchronize the method by adding the synchronized keyword.

2. Put the guarded block in a while-loop, which is controlled by a wait condition.

3. Call notify() to wake up the waiting thread only after completing all tasks or before exiting the

synchronized method. In other words, do not wake up the waiting thread pre-maturely.

Next, we discuss the result of running this example, following Listing 1.15.

Listing 1.15 SimpleBuffer.java with guarded blocks

1 package jcp.ch1.buffer.v3;

2

3 public class SimpleBuffer {

4 private final int[] buffer;

5 private int currIndex;

6

7 SimpleBuffer(int capacity) {

8 this.buffer = new int[capacity];

9 this.currIndex = 0;

10 }

11
12 final synchronized void put(int i) {

13 while (isFull()) {

14 try {

15 wait();

16 } catch (InterruptedException e) {

17 System.out.println("InterrupedException caught: "

18 + e.getStackTrace());

19 }

20 }

21 buffer[currIndex] = i;

22 System.out.println(Thread.currentThread().getName() + ": put " + i

23 + " at " + currIndex);

38 JAVA CONCURRENT PROGRAMMING: A QUANTITATIVE APPROACH

24 currIndex++;

25 notify();

26 }

27
28 final synchronized int get() {

29 while (isEmpty()) {

30 try {

31 wait();

32 } catch (InterruptedException e) {

33 System.out.println("InterrupedException caught: "

34 + e.getStackTrace());

35 }

36 }

37
38 int value = buffer[--currIndex];

39 System.out.println(Thread.currentThread().getName() + ": get " + value

40 + " at " + currIndex);

41 notify();

42 return value;

43 }

44
45 final synchronized boolean isFull() {

46 return currIndex == buffer.length;

47 }

48
49 final synchronized boolean isEmpty() {

50 return currIndex == 0;

51 }

52 }

To verify the above version of the SimpleBuffer implementation, I ran it on my Windows 8 laptop, with

the following result obtained on my Eclipse console:

......

Producer: put 39734 at 0
Producer: put 39735 at 1
Producer: put 39736 at 2
Producer: put 39737 at 3
Producer: put 39738 at 4
Producer: put 39739 at 5
Producer: put 39740 at 6
Producer: put 39741 at 7
Producer: put 39742 at 8
Producer: put 39743 at 9
Consumer: get 39743 at 9
Consumer: get 39742 at 8
Consumer: get 39741 at 7
Consumer: get 39740 at 6
Consumer: get 39739 at 5
Consumer: get 39738 at 4

CHAPTER 1: MULTITHREADED PROGRAMMING IN JAVA 39

Consumer: get 39737 at 3
Consumer: get 39736 at 2
Consumer: get 39735 at 1
Consumer: get 39734 at 0

......

In addition, Figure 1.10, obtained with the jvisualvm tool, shows that the consumer and producer threads

blocked and ran alternately. Note that at the time when the screenshot was being taken, the Consumer

was waiting for a lock while the Producer was holding several locks.

Figure 1.10 States of the Producer and Consumer threads with the SimpleBuffer class implemented with

guarded blocks

However, we still have one more task to accomplish with this SimpleBuffer class: Turning it from a

last-in-first-out stack data structure into a first-in-first-out queue data structure, which is the subject of

the next section.

40 JAVA CONCURRENT PROGRAMMING: A QUANTITATIVE APPROACH

1.7.8 Turning the SimpleBuffer Class into a First-In-First-Out Queue-Like Data

Structure

As shown in Listing 1.16, to turn the previous SimpleBuffer class into a first-in-first-out, queue-like

data structure, the following changes were made:

1. Two fields, head and tail, were added for tracking the head and the tail of the queue. These two

fields are also initialized in the constructor, as shown from lines 12 – 13.

2. The guarded blocks, lines 17 – 24 for the put method and lines 37 - 44 for the get method,

respectively, were not changed, since they are only tied to the condition of the buffer – whether

full or empty.

3. For the put method, line 25 shows that the buffer is filled at the tail. In addition, the tail has to be

wrapped to the beginning of the buffer when the buffer is full.

4. For the get method, line 46 shows that the element was taken at the head of the buffer.

Similarly, lines 49 – 50 show that when the head reaches the end of the buffer, it has to be

wrapped to the beginning of the buffer.

Running this example resulted in the following output on my Eclipse console, which verifies the

expected first-in-first-out behavior:

......
Producer: put 69023 at 3
Producer: put 69024 at 4
Producer: put 69025 at 5
Producer: put 69026 at 6
Producer: put 69027 at 7
Producer: put 69028 at 8
Producer: put 69029 at 9
Producer: put 69030 at 0
Producer: put 69031 at 1
Producer: put 69032 at 2
Consumer: get 69023 at 3
Consumer: get 69024 at 4
Consumer: get 69025 at 5
Consumer: get 69026 at 6
Consumer: get 69027 at 7
Consumer: get 69028 at 8
Consumer: get 69029 at 9
Consumer: get 69030 at 0
Consumer: get 69031 at 1
Consumer: get 69032 at 2
......

Next, we examine a deadlock example, showing how a deadlock may occur with two threads, both

waiting for the other party to release its lock.

Listing 1.16 SimpleBuffer.java that acts like a queue

CHAPTER 1: MULTITHREADED PROGRAMMING IN JAVA 41

1 package jcp.ch1.buffer.v4;

2

3 public class SimpleBuffer {

4 private final int[] buffer;

5 private int currIndex;

6 private int head;

7 private int tail;

8

9 SimpleBuffer(int capacity) {

10 this.buffer = new int[capacity];

11 this.currIndex = 0;

12 this.head = 0;

13 this.tail = 0;

14 }

15
16 final synchronized void put(int i) {

17 while (isFull()) {

18 try {

19 wait();

20 } catch (InterruptedException e) {

21 System.out.println("InterrupedException caught: "

22 + e.getStackTrace());

23 }

24 }

25 buffer[tail] = i;

26 System.out.println(Thread.currentThread().getName() + ": put " + i

27 + " at " + tail);

28
29 if (++tail == buffer.length)

30 tail = 0;

31
32 currIndex++;

33 notify();

34 }

35
36 final synchronized int get() {

37 while (isEmpty()) {

38 try {

39 wait();

40 } catch (InterruptedException e) {

41 System.out.println("InterrupedException caught: "

42 + e.getStackTrace());

43 }

44 }

45
46 int value = buffer[head];

47 System.out.println(Thread.currentThread().getName() + ": get " + value

48 + " at " + head);

49 if (++head == buffer.length)

50 head = 0;

51
52 --currIndex;

42 JAVA CONCURRENT PROGRAMMING: A QUANTITATIVE APPROACH

53 notify();

54 return value;

55 }

56
57 final synchronized boolean isFull() {

58 return currIndex == buffer.length;

59 }

60
61 final synchronized boolean isEmpty() {

62 return currIndex == 0;

63 }

64 }

1.8 DEADLOCK

First, it’s important to keep in mind that Java does not prevent deadlocks from happening. It’s an

application’s responsibility to take precaution to prevent deadlocks from happening or to have sound

strategies to cope with potential deadlocks when they do occur.

A deadlock occurs when two threads have a circular dependency on a pair of synchronized objects or

locks. For example, suppose one thread acquires the lock on object x and another thread acquires the

lock on object y. If the thread in x attempts to call a synchronized method on y, it will block as expected.

However, if the thread in y attempts to call a synchronized method on x, it would wait forever, as to

access x, it would have to release its own lock on y so that the thread x could complete. The next

example shows how a circular dependency on locks could potentially happen, leading to a deadlock

situation.

1.8.1 A Deadlock Example with a Parent and a Child Thread Calling the callMe

Method of two Non-Threaded Objects

Next, we use a simple example to demonstrate how deadlocks may occur. We have two classes: X.java

and Y.java as shown in Listings 1.174(a) and (b), respectively. Each of them has a pair of methods,

named callMe and hangUp, both of which are synchronized. Within each callMe method, a thread asks

the other party to hang up by invoking the other party’s hangUp method. At this point, I suggest that you

take a few minutes to get familiar with the callMe and hangUp methods for each of the X and Y classes.

In particular, note that a sleepTime parameter can be passed to the callMe method of each class so that

each object can sleep for a pre-specified amount of time in its callMe method.

Listing 1.17(a) X.java

1 package jcp.ch1.deadlock;

2

3 public class X {

4 public synchronized void callMe(Y y, long sleepTime) {

5 String name = Thread.currentThread().getName();

6 System.out.println(name +

7 " entered x thread class's callMe (Y y) method");

CHAPTER 1: MULTITHREADED PROGRAMMING IN JAVA 43

8

9 try {

10 Thread.sleep(sleepTime);

11 } catch (Exception e) {

12 System.out.println("Thread x interrupted");

13 }

14
15 System.out.println(name

16 + " attempting to call x thread class's Y.hangUp () method");

17 y.hangUp();

18 }

19
20 public synchronized void hangUp() {

21 System.out.println("Inside x thread class's X.hangUp ()");

22 }

23 }

Listing 1.17(b) Y.java

1 package jcp.ch1.deadlock;

2

3 public class Y {

4 public synchronized void callMe(X x, long sleepTime) {

5 String name = Thread.currentThread().getName();

6 System.out.println(name +

7 " entered y thread class callMe (X x) method");

8

9 try {

10 Thread.sleep(sleepTime);

11 } catch (Exception e) {

12 System.out.println("Thread Y interrupted");

13 }

14
15 System.out.println(name

 + " attempting to call y thread class's X.hangUp () method");

16 x.hangUp();

17 }

18
19 public synchronized void hangUp() {

20 System.out.println("Inside y thread class's Y.hangUp () method");

21 }

22 }

Now let’s test the above two non-threaded classes in a single-threaded test driver as shown in Listing

1.18(a). In this case, we first create the x and y objects as shown at lines 5 and 6, respectively. Then, we

call each object’s callMe method at lines 8 and 11, respectively. Since all operations occur within a

single thread, we do not expect a deadlock, as is verifiable with the following output obtained by running

it on my Eclipse IDE:

main entered x thread class's callMe (Y y) method
main attempting to call x thread class's Y.hangUp () method
Inside y thread class's Y.hangUp () method

44 JAVA CONCURRENT PROGRAMMING: A QUANTITATIVE APPROACH

Back in Main thread after x.callMe

main entered y thread class callMe (X x) method
main attempting to call y thread class's X.hangUp () method
Inside x thread class's X.hangUp ()
Back in Main thread after y.callMe

Next, let’s see what happens when we attempt to use two threads to test it.

Listing 1.18(a) DeadlockDemo0.java

1 package jcp.ch1.deadlock;

2

3 public class DeadlockDemo0 {

4 public static void main(String args[]) {

5 X x = new X();

6 Y y = new Y();

7

8 x.callMe(y, 0);

9 System.out.println("Back in Main thread after x.callMe\n---");

10
11 y.callMe(x, 0);

12 System.out.println("Back in Main thread after y.callMe");

13 }

14 }

Listing 1.18(b) shows a test driver for the above two non-threaded classes. As with the preceding single-

threaded test driver, we create an x object and a y object at lines 4 and 5, respectively. However, the

difference is that this test driver is a threaded class as it implements the Runnable interface; so we can

create and start a child thread in the parent’s constructor from lines 9 – 10 and invoke the x object’s

callMe method on the y object at line 12. In the run method of the threaded parent object, we invoke the

y object’s callMe method on x at line 17.

Now let’s run the test driver shown in Listing 1.18(b) and see what would happen. As you see, the parent

and child threads were deadlocked without being able to proceed, with the following output obtained

from my Eclipse IDE’s console:

Parent Thread entered x thread class's callMe (Y y) method
Child Thread entered y thread class callMe (X x) method
Child Thread attempting to call y thread class's X.hangUp () method
Parent Thread attempting to call x thread class's Y.hangUp () method

Next, let’s see how the jvisualvm tool can help us diagnose this deadlock.

Listing 1.18(b) DeadlockDemo1.java

1 package jcp.ch1.deadlock;

2

3 public class DeadlockDemo1 implements Runnable {

4 X x = new X();

CHAPTER 1: MULTITHREADED PROGRAMMING IN JAVA 45

5 Y y = new Y();

6

7 DeadlockDemo1() {

8 Thread.currentThread().setName("Parent Thread");

9 Thread t = new Thread(this, "Child Thread");

10 t.start();

11
12 x.callMe(y, 1000);

13 System.out.println("Back in Parent thread");

14 }

15
16 public void run() {

17 y.callMe(x, 0);

18 System.out.println("Back in Parent thread");

19 }

20
21 public static void main(String args[]) {

22 new DeadlockDemo1();

23 }

24 }

1.8.2 Diagnosing Deadlocks Using the jvisualvm Tool

While the two threads were deadlocked, I started up the jvisualvm tool and checked the Monitor tab as

shown in Figure 1.11. Unlike the situation with a livelock, the CPUs were barely breathing when the

deadlock occurred.

Figure 1.11 Zero CPU usage during the deadlock period

I then switched to the Threads tab immediately. As shown in Figure 1.12, both the parent and child

threads were in red, indicating that they were waiting for each other to release the locks and deadlocked.

46 JAVA CONCURRENT PROGRAMMING: A QUANTITATIVE APPROACH

Then, in the lower panel, I checked the Child and Parent threads and verified further that they were

indeed deadlocked with even more verbose test messages describing that:

▪ Child Thread locked on the Y.callMe method at Y.java’s line 16, namely, the

x.hangUp()statement.

▪ Parent Thread locked on the X.callMe method at X.java’s line 17, namely, the y.hangUp()

statement.

Figure 1.12 A deadlock detected on the jvisualvm tool

In addition, note the alert displayed at the upper right corner in Figure 1.12: “Deadlock detected!

Take a thread dump to get more info.” I took a thread dump by clicking the button there on the

jvisualvm tool, with the relevant part shown in Listing 1.19. The first and last segments in Listing 1.19

CHAPTER 1: MULTITHREADED PROGRAMMING IN JAVA 47

show similar stack trace information. The middle segment under “Found one Java-level deadlock:”

shows a more explicit description of the deadlock between the parent and the child threads that the Child

Thread was waiting to lock a monitor held by the Parent Thread, while the Parent Thread was waiting to

lock a monitor held by the Child Thread.

This deadlock is obvious and easily detected by the jvisualvm tool. However, with real products,

debugging deadlock issues is hard for two reasons:

▪ There might not be an exact execution path for a deadlock to occur, as it may depend on how the

CPU schedules its time-slicing from time to time.

▪ Deadlocks do not necessarily happen only when two threads or two locks get involved. It depends

more on a convoluted sequence of events than the number of threads or locks.

Still, tools like jvisualvm can help detect deadlocks as we have demonstrated here.

Listing 1.19 Thread dump for the deadlock example (partial)

......
"Child Thread" prio=6 tid=0x000000000234d000 nid=0x24ec waiting for monitor entry [0x0000000011fdf000]
 java.lang.Thread.State: BLOCKED (on object monitor)
 at jcp.ch1.deadlock.X.hangUp(X.java:21)
 - waiting to lock <0x00000007ab453ce0> (a jcp.ch1.deadlock.X)
 at jcp.ch1.deadlock.Y.callMe(Y.java:16)
 - locked <0x00000007ab455670> (a jcp.ch1.deadlock.Y)
 at jcp.ch1.deadlock.DeadlockDemo1.run(DeadlockDemo1.java:17)
 at java.lang.Thread.run(Thread.java:744)

 Locked ownable synchronizers:
 - None
......
"Parent Thread" prio=6 tid=0x0000000002253000 nid=0x24dc waiting for monitor entry [0x000000000217f000]
 java.lang.Thread.State: BLOCKED (on object monitor)
 at jcp.ch1.deadlock.Y.hangUp(Y.java:20)
 - waiting to lock <0x00000007ab455670> (a jcp.ch1.deadlock.Y)
 at jcp.ch1.deadlock.X.callMe(X.java:17)
 - locked <0x00000007ab453ce0> (a jcp.ch1.deadlock.X)
 at jcp.ch1.deadlock.DeadlockDemo1.<init>(DeadlockDemo1.java:12)
 at jcp.ch1.deadlock.DeadlockDemo1.main(DeadlockDemo1.java:22)

 Locked ownable synchronizers:
 - None
......
Found one Java-level deadlock:
=============================
"Child Thread":
 waiting to lock monitor 0x000000000f50f278 (object 0x00000007ab453ce0, a jcp.ch1.deadlock.X),
 which is held by "Parent Thread"
"Parent Thread":
 waiting to lock monitor 0x000000000f50dd28 (object 0x00000007ab455670, a jcp.ch1.deadlock.Y),

48 JAVA CONCURRENT PROGRAMMING: A QUANTITATIVE APPROACH

 which is held by "Child Thread"

Java stack information for the threads listed above:
===
"Child Thread":
 at jcp.ch1.deadlock.X.hangUp(X.java:21)
 - waiting to lock <0x00000007ab453ce0> (a jcp.ch1.deadlock.X)
 at jcp.ch1.deadlock.Y.callMe(Y.java:16)
 - locked <0x00000007ab455670> (a jcp.ch1.deadlock.Y)
 at jcp.ch1.deadlock.DeadlockDemo1.run(DeadlockDemo1.java:17)
 at java.lang.Thread.run(Thread.java:744)
"Parent Thread":
 at jcp.ch1.deadlock.Y.hangUp(Y.java:20)
 - waiting to lock <0x00000007ab455670> (a jcp.ch1.deadlock.Y)
 at jcp.ch1.deadlock.X.callMe(X.java:17)
 - locked <0x00000007ab453ce0> (a jcp.ch1.deadlock.X)
 at jcp.ch1.deadlock.DeadlockDemo1.<init>(DeadlockDemo1.java:12)
 at jcp.ch1.deadlock.DeadlockDemo1.main(DeadlockDemo1.java:22)

Found 1 deadlock.

1.9 SUSPENDING, RESUMING, AND STOPPING THREADS

Java 1.0 provided methods such as suspend(), resume(), and stop(), to manage thread executions.

However, it’s important to know that all those methods have been deprecated since Java 2.0 for various

reasons, for example:

▪ The suspend() method is deprecated as it can sometimes cause serious system failures. For example,

when a thread has obtained locks on critical data structures and is suspended at some point, those

locks may not be relinquished, causing other threads waiting for those resources to be deadlocked.

▪ The resume() method is deprecated since it is supposed to resume a suspended thread and the

suspend() method is deprecated.

▪ The stop() method is also deprecated since Java 2 for reasons similar to why the suspend() method

is deprecated. When a thread is writing to a data structure in the midway while it is stopped, the data

structure might be left in a corrupted state. The stop() method causes any lock that the calling thread

holds to be released. Thus, the corrupted data might be used by other threads waiting on the same

lock.

Since Java 2, it is recommended to depend on Boolean variables, such as a suspendFlag declared within

a thread, to control thread suspending and resuming operations. In general, it’s not good practice to

manage your threads with your own customized code, as there are too many potential execution paths

that may lead to system failures. Instead, consider the following:

▪ Using the ExecutorService framework introduced in Java 5 that allows thread pools to be created and

managed more transparently.

CHAPTER 1: MULTITHREADED PROGRAMMING IN JAVA 49

▪ Using the Fork-Join framework introduced in Java 7 for large-scale, compute-intensive applications,

as it will allow applications to scale automatically to make use of the available processors in a

modern multi-core system.

The next chapter introduces the ExecutorService framework, while Chapter 8 introduces the Fork-Join

framework.

1.10 THE JAVA MEMORY MODEL

In general, Java memory model consists of three parts: locks (implicit or explicit), volatile variables and

the final keyword. Throughout this text, you will see many such examples. However, the keyword final

can be used much more broadly, such as:

1. Class: When a class is declared final, it cannot be inherited.

2. Method: When a method is declared final, it cannot be overridden.

3. A variable: When a variable is declared final, it cannot be modified (or mutated) once

initialized. Thus, a “final” object is immutable. This is a very important concept, as we know

that an immutable object can be read concurrently without having to be locked.

This book focuses on achieving synchronization mostly with the help of locks and sometimes with the

volatile modifier.

1.11 THE BRIDGE EXAMPLE

Before concluding this chapter, I’d like to share a Java concurrent programming exercise I once got from

a prospective employer prior to an interview arranged later. The description for that exercise is given

below. If you are interested in consolidating what you have learnt in this chapter, I suggest that you try to

complete this exercise on your own, and then compare with my implementation given in Appendix B.

1.12 SUMMARY

This chapter started with introducing some basic concepts about Java threads, including potential issues

with Java concurrency and all possible states for a Java thread. It then focused on how to create Java

threads by implementing the Runnable interface or extending the Thread class.

50 JAVA CONCURRENT PROGRAMMING: A QUANTITATIVE APPROACH

However, the main theme of this chapter is to help you understand how the synchronized keyword

feature (or the implicit monitor locks) introduced since Java 1.0 can help solve many Java concurrency

problems. It’s important to understand how threads can be coordinated with methods such as wait(),

notify() and notifyAll(), in conjunction with guarded blocks on certain crucial conditions if

necessary. Using several different versions of the SimpleBuffer example, we demonstrated potential

issues caused by busy-waits, such as livelock, starvation, etc. A simple deadlock example was presented

to show how a deadlock might happen if a circular dependency exists between two threads waiting for

the other party to release a lock first. The jvisualvm tool was introduced to demonstrate how a deadlock

situation could be accurately pinpointed down with the help of a thread dump, which gives detailed

information about the stack trace associated with the deadlocked threads.

I suggest that you study the various versions of the SimpleBuffer example carefully to understand

various issues and outcomes as summarized in Table 1.1. I also suggest that you revisit those screenshots

taken with jvisualvm to characterize patterns of color changes for threads involved, associated with

livelock, starvation, deadlock and normal cases.

Table 1.1 Various versions of the SimpleBuffer example

Code Listing Busy-Wait Condition check Synchronized Outcome Figure

1.9(a) yes no no OOB Exception -

1.10(d) yes yes no livelock 1.7

1.11 yes yes yes starvation 1.9

1.12 no yes yes OK 1.10

We concluded the chapter by introducing an optional exercise of solving the classical concurrent

programming example of having multiple cars crossing a bridge, which can be implemented by just

using the synchronized keyword feature introduced since Java 1.0. Appendix B provides a reference for

that exercise.

The next chapter focuses on the ExecutorService framework introduced in Java 5. This framework is

commonly used in multi-threaded Java applications running in production environments, in the context

of dealing with the following concurrent programming problems:

▪ Mutual exclusion problems. Involved memory locations must be accessed by a single thread only,

such as the incremental operation (i++).

▪ Producer-consumer problems. Conditional waits must be introduced to block the other party until

certain conditions are met.

▪ Readers-writers problems. Readers and writers can be arranged to access a shared data structure

concurrently without having to block each other.

It’s important to always realize what concurrent programming problems we are trying to solve and how

they are solved.

CHAPTER 1: MULTITHREADED PROGRAMMING IN JAVA 51

1.13 EXERCISES

Exercise 1.1 What’s the difference between a process and a thread?

Exercise 1.2 What’s the implication of Equation (1.1), the performance law for sequential programs?

Exercise 1.3 Describe how you can use Equations (1.1) and (1.6) to gauge performance optimization

initiatives and efforts for a particular performance issue.

Exercise 1.4 What are the two major concerns with concurrent programs?

Exercise 1.5 What does the term “happens-before” mean in the context of concurrent programming?

What measures are typically employed to help enforce “happens-before” relationships?

Exercise 1.6 Describe the difference between the synchronized keyword and the volatile keyword.

Exercise 1.7 What does the Thread.join() method do?

Exercise 1.8 What’s the difference between the thread states of BLOCKED and

WAITING/TIMED_WAITING?

Exercise 1.9 Describe when to use the Runnable interface or the Thread class to create a new thread.

Exercise 1.10 State the criterion for choosing between synchronizing a method and synchronizing a

block.

Exercise 1.11 Why is busy-wait or busy-spin not desirable?

Exercise 1.12 Describe what it means exactly by the term of livelock or starvation or deadlock.

Exercise 1.13 Write a simple deadlock program.

Exercise 1.14 How do you determine if the threads are running normally, or livelocked, or starving, or

dead-locked?

Exercise 1.15 With the SimpleBuffer examples presented in this chapter, why are array indexes not

wrapped around?

