Java Concurrent Programming:
A Quantitative Approach

Henry H. Liu

SP PerfMath

Copyright @2015 by Henry H. Liu. All rights reserved

The right of Henry H. Liu to be identified as author of this book has been asserted by him in accordance
with the Copyright, Designs and Patens Act 1988.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form or
by any means, electronic, mechanical, photocopying, recording, scanning, or otherwise, except as
permitted under Section 107 or 108 of the 1976 United States Copyright Act, without either the prior
written permission of the Publisher, or authorization through payment of the appropriate per-copy fee to
the Copyright Clearance Center, Inc., 222 Rosewood Drive, Danvers, MA 01923, (978) 750-8400, fax
(978) 750-4470, or on the web at www.copyright.com.

The contents in this book have been included for their instructional value. They have been tested with
care but are not guaranteed for any particular purpose. Neither the publisher nor author shall be liable for
any loss of profit or any other commercial damages, including but not limited to special, incidental,
consequential, or other damages.

ISBN-13: 978-1514849873
ISBN-10: 1514849879

10987654321
09022015

http://www.copyright.com/

To My Family

Table of Contents

LIST OF PROGRAIMScoiiuiiiueiiieeiietiistsssts s ses s st sssst s s e s s se s ssesaas s st s s se s at s sas s s sn e s naesesanssnnasanns X1
Y= 0 o [U S XIX
o] 1] 2 o7 ¥ o = XX
WVHY THIS BOOK ¢ cuteutententestesteete et ett et ettt sbesbe bt eat et et e st e besbeebeeae e st emse s e besbeebeebeebeeat et enbesbeebesbesbeeneentenee XXl
WHOM THIS BOOK IS FOR ... vttt sttt ettt ettt eh sttt st bbbt bene e b sbe s e enne XXIV
HOW THIS BOOK IS ORGANIZEDveuveeveureneentestentesieeseseeentensessessessessesseeseesensesnessessesmeeneensensensesaeasesneensensens XXIV
SOFTWARE AND HARDWAREceutitetiattntteueeutentetesseesesbtestease s ebesaesresseeseess et enbesaeebesaeeseeanesaeabesaeeseeneeneenne XXV
HOW TO USE THIS BOOK ..uteutetisterueeuteutestete st st sttt eat et esteseesbesbesbeeae et ente st e besbesbeeatentenbentesbesaesbesneensensans XXVI
TYPOGRAPHIC CONVENTIONS ...veuvteueeuteutentantesuestessesueestensensessestessesseeutensensessenbesaeesesaeentensensanbesaeebesneensensens XXVI
HOW TO REACH THE AUTHOR ...t tetteuteutentetestestesteeteeutententessesbesbesbeeseensensessanbesbeebesatensensensenbesaeebesneensensens XXVI
THE BOOK'S WEB SITE...eiutteiteinitiesiteesit e st e sttt e st e sttt e st e sib e sit e e sab e e s me e e sabeeemeeesabeene e e sabeesnneesaneeneeesnneeneas XXVI
ACKNOWLEDGEMENTScoooeiiietiiintiiiteiseeissessssesssstessse s sessssesssst s sss s s ssesessesessssssssssessesessesssasssns XXvii
1 MULTITHREADED PROGRAMMING IN JAVAooiiiiiiieiiiiinnnieseessesssesssessssssssssssssesesasssssnesns 1
1.1 PERSPECTIVES OF CONCURRENT PROGRAMMING <..uveuverviarerseeueentensensessessesseeseessensensessessessesmsensensensensens 1

1.2 A HISTORICAL OVERVIEW OF CONCURRENT ALGORITHMSeeeeevrrunnreeeeeeernnneeeeeesessnnnaeeesssssssnnnesessesssnes 4

Il CONTENTS

1.2.1 DeKKEr'S AIGOItRMccovueeeiiiiiieieieeeet ettt ettt ettt 4
1.2.2 Peterson’s AIGOItAMc.coocueioiieiiiiee ettt 5
1.2.3 The BaKery AlGOItRmcoocueieieeiiieeeeee ettt ettt 6
13 EVOLUTION OF JAVA CONCURRENCY SUPPORTceuvveriientieteentesseesseesseeseenressnessnesmeesseenseensesnsesneessessseens 9
1.4 JAVA THREADS ...ttt st st sttt ettt st sae e b e bt e e e san e s bt e sbeesae e bt eme e s st e ebe e s b e e b e ennesanesanesanes 10
1.4.1 Potential Issues With JAVA CONCUITENCYcccccuueeeecreeeeeirisessiiraessiseaesiissasssseesessssesessssees 10
1.4.2 All Possible States for a Java TAreQdccccueeeeeeuveeeeiieieeeiieeeecteeeeecieaeesieeaeesraaeesaseas 11
1.4.3 Livelock, Starvation and DEAAIOCK................ceeeeeceeueeeeeieeeeecieeieeeeeeeeciveeeeeeeeectieeaaeeeeessanes 12
1.5 CREATING A THREAD ...utteutteuteeuteeutesutesseesueesseesseensesnsesueesseasseenseansesnsesnsesasesaeesseanseensesnsesnsesssesseessenns 13
1.5.1 Implements RUNNQADIE...............coooueeeueieieieieeeeeee ettt ettt ettt 19
152 EXEENAS TAMEAU. ..ottt ettt ettt et e beeenaee e 21
1.6 SYNCHRONIZATION ..veeuteeueeeueesueenteenteenseestesasesueesseesseenseensesmeesueesbeesseeasesnsesssesseesseenseensesnsesnsensnenseens 23
1.6.1 SYNCHronized MELROGSuveeeeeeeeeeie e eee et ettt et te e e ettt e e e sta e e e s saeaeetsaaeesses 23
1.6.2 SYNCAIONIZEA BIOCKSveeeeeeeeeee et ette ettt e ettt e ettt e e e sttt e e e saa e e s saaaeessaaensses 26
1.7 INTER-THREAD COMMUNICATIONS ...veuvveteurensenrersessesseeseensenseseseessessesseemeensensensensessessesseeneensensensensens 27
1.7.1 BUSY WQIt / BUSY SPIN..eoveeeeeeeeeeeveeeeeeeeeettettee st ecaeeaestesteeeaseaveeasa e e esssesaesssessesseessenssenes 28
1.7.2 A Simple Buffer Accessed by a Single TAreadccueeeecueeeeciieeesiiieeeciieeeciieeeeiae e 28

1.7.3 The Simple Buffer Accessed by Two Threads: Busy-Wait with no Conditional Check (OOB)30
1.7.4 The Simple Buffer Accessed by Two Threads: Busy-Wait with Conditional Check but no

SYNCAIONIZALION (LIVEIOCK)eeveeeeeeeeeeee ettt e e ettt e e e e e e st a e e et aeeeaassaeeaasenaans 32
1.7.5 Detecting LOCKING ISSUES...........uvverieeeeeeciieiee e eeeeeeatteaa e e e stesttte e e e e eesssssaaaaaesessssaeaaaassansnnnes 33
1.7.6 The Simple Buffer Accessed by Two Threads: Busy-Wait with Conditional Check and
SYNCArONIZAtION (SEAIVATION)oeecveeetieeeteeestie et ectte e ete et teeeete ettt eette e s tte e s aeeastseesssesssseesssessseeeseanases 34
1.7.7 Guarded Blocks with Asynchronous Waiting.............cceeeeeueeeeciuieeeeiieeesiiiesesiieesesisesaessnsens 37
1.7.8 Turning the SimpleBuffer Class into a First-In-First-Out Queue-Like Data Structure........... 40
1.8 DEADLOCK .vtteiuitieiiitiee ittt e sttt sttt sab e s e bt s bbb e e s s ba e e s e bt s s ab b e e s s b e e e s e bb e e e sbab e e e s b e e e s ba e e e snae s 42

1.8.1 A Deadlock Example with a Parent and a Child Thread Calling the callMe Method of two
INON-TAIrEAUEA OBJECES.....coveeeeeeieeeeee ettt e e ettt e e e e e e ettt e e e e e e et aaaaeeeassssasaaaseesssssssseaaaaaaaas 42

1.8.2 Diagnosing Deadlocks Using the jvisualvm TOO!cccccuuveeiieeeeiiiiiiiieeeeeciiieiaeeeeeesinns 45

CONTENTS I

1.9 SUSPENDING, RESUMING, AND STOPPING THREADS ...uuuuuuuuuuuunuunns 48
1.10 THE JAVAIMEMORY IMODEL.....cviiiiiiieeiiiiiieiiiteeesirte e et e s eire e ssat e e s e s eane e s snaee s esresesennneeesnaeeeas 49
111 THE BRIDGE EXAMPLE...cutiitteitteiteete et et e ett et e bt eateeatesatesheesbeeste e et sateeutasbeesbeenbeeabesatesatesaeesaeeeeenee 49
112 SUMMARY Lottt ettt et e e e st e e s h et e e e e s et e e bt e e e a e e s nae e e sraeeeas 49
1.13 EXERCISES...eeueeureeureeutenueenteesteesteeteenetemeesseesbeesseeasesasesaeesbeesb e e st e et eme e eme e beesb e e s e ennesmnesmnesmeenreenseenes 51
JAVA THREAD EXECUTORSERVICE FRAMEWORKuueeiiineriiiisneeiissneeiisssnesissseessssseessssaseesenns 53
21 THE CALLABLE AND FUTURE INTERFACES. ... ceeuteteeteeterteniresieesteesteenseeneesneesseenseesesnsesssesmeesseesseensesnns 54
2.2 THE EXECUTOR INTERFACE ...vvettetteteenteeuteeutesteenteeteensesasesaeesseesseenseensesnsesseansesnsesnsesnsesnsesaeesseensesnes 55
2.2.0 EXCCULOL ettt e e e s e s e e e e e e e e e ee s e e e s e s e s e saseaeseaeaeeesaseaaaasasasasaeaaasanans 55
2.2.2 EXCCULOISEIVICE.eeeeeeeeeeeeeeeeee ettt e ettt e e e e e sttt e e e e s sttt e e e e e e ssssssbbeaeaeesessassnes 55
2.2.3 SCHedUIEAEXECULOISEIVICEooeueeeieieieeeeeeee ettt ettt saee e 56
2.3 THE THREAD POOL CLASSES ...cuvtettenteenteeneeeueenteeteebesstesatesieesbeesseenseenseemeesseesesasesasesssesseesseesseensennns 57
2.3.1 The RunnableFutureinterface and the FutureTasK ClASS........ccccevvuveveccuveesciiereesiiesescnnnns 57
2.3.2 ADSErACLEXECULOISEIVICE ...ttt ettt 59
2.3.3 TRI@AUPOOIEXECULONcoeeeeiiieiieseeee ettt 60
2.3.4 FOIKJOINPOOL.oooieiiiiieeiseeteee ettt sttt sttt aee s 64
2.3.5 S5cheduledThreadPOOIEXECULONcoccueerieieiieeiiieee et 64
2.4 THE EXECUTORS UTILITY CLASS ..cvtenttenrieieieieesteere et sre st st saeene e e sne e ne e ne e senesinesreesaeene s 66
2.4.1 The DefaultThreadFactory INNEIr ClASS..........cueccueeeeeeiieeecieeeesieeeeiieeeseieaessieaeesssaeaeseseeas 68
2.4.2 The newSingleThreadEXecutor MEtNOM.............c.eeeeecuiieeeciieeesiieeeecieeesieeesceaeessaea e 69
2.4.3 The newFixedThreadPool Methodccccoecuiruirieiriieniiiieiieeeeeeeeee e 69
2.4.4 The newCachedThreadPool Method................ccocveeieiniiiiniiiiiiieiieieeee e 70
2.5 SOME EXECUTORSERVICE EXAMPLES ...cceiiiuriiiiiiriiiiitiesiiitie st e e siree s sire e s esre e snnae e snaeessnnasesennnes 70
2.5.1 The Method execute (Runnable) does not Return a ReSuUlt...........coooveeeveeeeeeeeeeeeeeeeeeeenann. 71
2.5.2 The Method submit (Runnable) Returns a Future Object (Status)ccccocvevevvvrenunen. 72
2.5.3 The Method submit (Callable) Returns a Future Object (Result)...........ccccouveeecrvvnennnen. 73
2.5.4 The Method invokeAny (Callables) Succeeds if Any One Task Succeeds 76
2.5.5 The Method invokeAll (Callables) Succeeds if All Callables Succeed 78

I\ CONTENTS

2.6 SUMMARY ... etttetiitte ettt e st e st e st e s sba e e e s i bt e e s eba e e e s sba e e s sab e e e s ebb et e snbb e e s s b et e s e nbe e e s nrn e e s srareeas 79
2.7 EXERCISES 1.uttvttieiiiiiiitti ettt ettt st e s s a s e s e e e s a s st e e e s e a e e e e e e s a e e e e e s e 80
3 THE JAVA COLLECTIONS FRAMEWORKciittiueiiiiiiiiininnniiiniiiinsssesisssiinssssssssssssiessssssssssssssssssnss 83
31 COLLECTIONS OVERVIEW ...euteeureeurerirenieesieesteeseenseemessseesseesseesesssesssesasessnesseesseenseenseensesnesaneesseesseens 83
3.2 THE COLLECTION INTERFACES. ...c.uteruterteeseeneeneesmeesmeesseesseesresanesanesseesbeesseenseenstsneeeneesseensesnsesasesnesnnes 85
3.2.1 The Iterable and Iterator INTEIfACESuueeuuieeecieeeeeceeeeeceee et eesceeeseteeeesraaeesseeaeas 85
3.2.2 The COlleCtion INEIFACE.........ccceccueeeeeeieeeeeeeeeetteeectee et tte e e ettt e e e e e e s taa e e staeeeesasaaeesasenaeas 87
3.2.3 TRE SO INLEITACE ..ottt et ettt e naae e 88
3.2.4 The SOrteASEE INTOITACE.......ccccccveeeeecieeeeceeeeeeteeeeee e este e e ettt e e e st e e et taaaestssaeessssaeessenaaas 88
3.2.5 The NavigableSet INterfacCeccuueveeeiiieiiieiieeeee ettt 89
3.2.6 TRE LISt INEEITACE ..ottt ettt ettt e nae e 90
3.2.7 The LiStIterator INEEIFACE.........ccc.ueecueeeeiieeieieee ettt 91
3.2.8 The QUEUE INEEITACEc.eeeeeeeeeeieeeee ettt ettt 92
IV B U o T D =00 1) [0l [1 (=1 g (o (o - USSR 93
3.3 THE SET COLLECTION CLASSES. ...uvteiiiuriieiiirireiiirteeeirtte s sttt sirneessbasessmbs s e seabae e s snasessssrasesensnssesnnnes 94
3.3.1 The ADSEIACESE ClOSS ...cc.eeeeeiiieieeiiieeeeeee ettt 95
3.3.2 TRE HOSNSEE ClASS ..ottt s 96
3.3.3 The LinkedHASNSEt CIASSccooeeeerieiieiiniieeiseesetet ettt 99
3.3.4 TRE TIEESEL ClUSS.....eeieeieiiieiiee ettt 100
34 THE LIST COLLECTION CLASSES .. evtuveirenieesieenttett ettt st esre et et enesenesanesaeesaeesaeennsensennesneesneesseens 103
3.4.1 The ADSEIACELISt ClOSS....c...coviieeiiiiiieeieeeeeeee ettt 104
3.4.2 The RANAOMACCESS INTEIFACEocceeeeeeeeeeeeeeeeeeee et e et e et e e e et e e e staa e e e aanas 105
3.4.3 TRE AITQYLISt ClASS...cveeeeeaeeeiee ettt ettt e e ettt e e e e e ettt a e e e e e ssasbaaaaeesassssssenaaas 105
3.4.4 The AbstractSequUEeNtiQILISt CIASScceeeeeeciiiieieeeeeescceeeee e eeescettee e e e e e et tree e e e e e e e ssseaaaas 109
3.4.5 The LINKEALISt ClASSocoueeeeeeieiieeeeeeeee ettt 110
3.4.6 ArrQyList VErsus LINKEALISt...........c..oeeeeueeeeeeiieeeeieeeeeee e et cteaeesttee e ettt e estaaessnseaessasaaassnees 116
35 THE QUEUE COLLECTION CLASSES.veuverueerteeneeteetteneteseesseesreesneeresenesenesmeesmeesseenstennseneesseesneesresas 117
3.5.1 TRE ArrQYDEQUE ClOSS.........eveeeeeeeeeeeeeeee et e ettt a e e ettt a e e e e s ee e e e e eeessssssenaans 117

CONTENTS \

3.5.2 The ADStraCtQUEUE ClOSScoeueeiieeieesieeeee ettt 122
3.5.3 The PriofityQUEUE ClASSc...oeeveeeeeeeiiieeeiieeeeieeeeiieeeesiite e sstaeestteeessaiaesssasasessnsseaennans 123
3.6 THE IMAP INTERFACESuvtttiiiiiiiiiritite st s e s s a s s e e s s e s aa s s e e e s sabaa s s e s e e s sennnasenes 126
3.6.1 ThE MAP INEEITOCE ...ttt sttt 127
3.6.2 The SOrtedMap INTEIFACEoveeeeeeeeeee e ee e et e e ettt e et tte e e e tea e e staaaesssasaaessseaaeanes 129
3.6.3 The NavigableMap INtEIfACEccccuveeeecieieeeieeeecee et et ceeeeeteeeeseaa e e s saaaeesseaaeaans 129
3.7 THE IVIAP CLASSES «.veuteeuteeuteritesttesttenteeseeneeeseesbeesbee bt eabesasesasesaeesbeenbeenbeenetemeeeseenbeenbeenbeenbesnsesnnes 131
3.7.1 The ABDSLIACEMAP ClASSeeeeeeeieisieeeeesteee ettt e s 131
3.7.2 TRE HASAMOP ClASS.....c...eeeeeeieeeeeseeeee ettt ettt s e st e s s 132
3.7.3 The LinkedHASAMAP CIASScoeueerieeeieesiieeiee ettt ettt et e s s 137
3.7. 4 TRE TIEEIMAP ClOSS....ccueeeieeiieeeeeeeeee ettt ettt ettt s e st e st e s ne e st e sanee s 141
3.7.5 The IdentityHASAIMGAD CIOSSueeeecieieeeeiiieescieeeeceeeesiteeesiteaeeetseeeestaaaesssasasesasesanaans 144
3.7.6 The WeakHASNMOAP CIASSoeeeeeeeeeeiie e eeeeeeeteeeettaa e et ttaaeessaaeestaaaesssssaeesasasananns 144
3.8 THE ALGORITHMS APPLIED TO COLLECTIONS ...cuvtenteenreenteenresutesseesieesseesseenseensesmeesseesseenseensessessesnees 145
3.8.1 The Algorithms Applicable to COIIECLIONSouveeeeeeeeiiiiieeeeeeceeee e a e eeeiines 147
3.8.2 The Algorithms APPlICADBIE t0 SELSvvveeeeieeeeeeeeeie ettt eeta e eseaeesieaeeaans 149
3.8.3 The Algorithms APPlICADBIE t0 LiSES..........ueeeeeeeeeeiiieeecieieeeeiieeesieeescteeesstta e eseaeaeessseaesanns 150
3.8.4 The Algorithms Applicable t0 QUEUEScceecveeeeeciieeeeiieeeeieeeeceeeeeitaeesseeaeesieaesaaes 153
3.8.5 The Algorithms ApplicAble tO MAPSccueeeeeeueiiieeeeeeeccieee e eeccteee e e ee et eaa e e e eessanes 155
3.8.6 The emptyXxxx and singletonXxxx AlGQOrithmscccccuuveeieeeeecciiiiiieeeeeecciieeeeaeeeeeiinns 157
3.9 THE ARRAYS CLASS .. iutvteeiiiriieiiitt ettt ettt s ba e sbb e s s b e e s ba e e e s ba e e e s sab e e e s s bba s e seabaeessnbeeeas 159
3.10 LEGACY COLLECTION CLASSES ..cuvtetteuteeuetaueenteeteensesssesssesseesseesseenseanseemeesseenseensessesssesseesueenseensesnes 160
3.1T SUMMARY oottt si et rt et ettt e s r e ettt s e s he e s h e e s et e et et h et R e Rt e r e e r e e n e s e seeenreene s 161
3.2 EXERCISES..euueereeurieurerurenieenieenteennteteeseesme e s st e r e e reseresenesaeesreenseenateme s emeeen e e b e e r e e re e n e s e sreenreeneenes 162
ATOMIC OPERATIONScoocvuieiiinnteiisnteiiisnteiisssnesisssnesissssnessssssessessssesssssssessssssessessssesssssssesssns 163
4.1 THE NATIVE UNSAFE CLASS. ...c.eveieeieenteett ettt etees et et snesnesieesaeesneesntemeseseesneesneesne e nesenesmnesnnes 165
4.2 ATOMICINTEGER ...ttt itttetiiittte sttt ettt st sb bt e s e e e e s ba e e sbb e e e s sab e e e s s aba s e sanaeessbaeeeas 167

4.2.1 IMPICMENTALION ...t e ettt e e e e e e et a e e e e e sa st e s e aaesesssstsassaaaeaasinnses 167

Vi

CONTENTS
4.2.2 AN EXAMIPIC...cnieeeieeeeee ettt et aee e 169
4.3 ATOMICINTEGERARRAYuttiuteeuterutesitesutesueesueenteensesatesueasseesseenteeabesasesaeesasesueesseenseensesnsesasesssesseens 171
4.4 OTHER ATOMIC CLASSES .. uttteieuriresiiteeessrteessireee s st e e ssseeessire e e s e sre e e sembaeessabaeesennesesansneessneeeeas 175
4.5 SUMMARY....ctuteittenteesteeste et st eseesseesbe e st e b e saseseeesbeesbeesbe e bt eseteaeeeseeabe e b e e b e eanesanesanesbeenree st enneenes 176
4.6 EXERCISES -.envteteeteete et et sttt stee et et et set e sie e s bt e s bt et e et e ae e s b e b e et e e b e sanesanesaeenbe e bt e et eneeeneenneereens 176
100 T 0 S 177
5.1 THE JAVA LOCKS. .. cuteteenteetteuteeite st st e sitesteeste et et e sat e s bt esbe e b e e be et e sabesseesbeesbee bt enseenseeneesseenneenbeeas 178
5,101 TRE LOCK INTEITOCE ...ttt ettt saee e 179
5.1.2 The ReentrantLOCK ClOSS..........cccueeueeeiueieieieieeeieeeee ettt 180
5,103 AN EXAMIPIC...neieaeeeeeeee ettt ettt e saee e 185
5.2 THE JAVA READWRITELOCKSeuteeitesiiesiiesteesie ettt et st e sat et e e e tesatesaeesaeesaeesaeeneeenteensesanenanensaens 187
5.2.1 The ReAdWIiteLOCK INTEIFACEcccceveeeeeeeeeeeeeeeeee et e st e et ee e e e steeeeetaa e e e aaeas 187
5.2.2 The ReentrantReadWIiteLOCK ClASScoceevueeueriiniinieseeeeeeeeeeeeeee et 187
IV B Vo I (o [1T) =2 USRS 192
53 THE CONDITION INTERFACEcevteuteuteteesesteeseeieeeestesaesresbeese et e e e besaesnesseeseesne s e besaeenesseemeeaneneennenee 194
5.4 ABSTRACT QUEUED SYNCHRONIZERS .. cuvenvtneeiteneententesresieeseesenseseseeenesseeseessensenesaesnesseeneensensensenes 199
5.4.1 The AbstractOWNGDBIESYNCAIONIZENc...veeeeeeiieeeeiie e eecte et eetee e ssee s st e e e 199
5.4.2 The AbstractQUEUEASYNCAIONIZENcccveeeeeeriieeeeiieeesiieeeesteeestteesteeessteaesssstaeeseraes 200
5.4.3 The AbstractQueuedLoNgSYNCAIONIZELueeeeeeeeceeiiieeeeeeeccietiee e eessestteea e e e e eesvseeeaas 207
5.5 SUMMARY ... ctttttiiitiee ittt sbb e e s e e s e b s s a e e s saba e e s s b b e e e s b b e e s b e e e s e a e e s br e e srr e 207
5.6 EXERCISES 1.vvteiiutrieiiittieiirite sttt str e st e sttt a e e st e s e ab e e e st b e e s sba e e s s ab e e e s ba e e e sbae e e e sn b e e e saea 208
SYNCHRONIZERSuuuiiiiinnniiiiuniiiisnneiiiinneiiiseeeiismeeiissmesiossmeiemsstesesssesiesssessesssesssssssesesss 209
6.1 SEMAPHORE ...c..vevteteettete et et st eseesr e n et ser e sen e sbeesbeesb e e et esn e eme e e s e e s b e e r e e reearesanesenesaeenreenneenneenes 210
6.1.1 Semaphore IMPIlemMENtALION.c..cceccueeeeeeriieeeceeeesee e et e e s e e s steaeesteaasssaeaesssseaenanes 210
6.1.2 An Example of Using a BinGry SEMQAPROIEeeeecueeeeeeiiieesiieeeesiieeesiiesassiasaesissenannans 215
6.1.3 A Buffer Synchronized With SEMAPAOIES...........ccccuuuueveeiieeeiciiiieeeeeeeecieeee e eecccereaaaeeea 217
6.2 CYCLICBARRIER ...ttt ittt ettt ettt b e e s e e e s e b e e e s bbb e e s sb e s e s s bb e s e snraeessanaeesas 220

6.2.1 CyclicBarrier IMPIEMENtALIONccceeueveeeieeeeeecceieee e ee et e e e e e e sscteea e e e e e s sitrsraaaaeeeas 220

CONTENTS Vil

6.2.2 An Example of USiNg G CYCHICBAITIENcc..eevueeerieasieisiieeieeseesieese e 223
6.3 COUNTDOWNLATCH ceiiiiiiiiiiiiiiies ittt e s s a e s e s s s sabaa s e e e s s e sannes 225
6.3.1 CountDownLatch IMplementation..............ccccveeeeecueieeeiiieeessiieeeesiieeesieeeesiieeeesiaeeesieee s 225
6.3.2 An Example of Using @ CountDOWNLALCA............coovueeveeiniieniiiiieeseeseeee e 227
6.4 EXCHANGER ...t enteenttete ettt et e st et et et sat e sat e sbee s b e sb e b et e e et s ae e e b e b e e b e e b e e aresanesmnesmeesreenneenneenns 229
6.4.1 Exchanger IMpPlementatioN.............ccueeeccueeeeeciieeeescieeeeceeeescteeeestaaeesiaeaessteaeesssaaesreeaaas 230
6.4.2 An Example of USiNG QN EXCAQNGEToeeeeuveeeeeieeeeiieeeseieeeesieaeesiaaaessvaaaesssaaesssnaens 232
6.5 L TN = S PP P PP P PP PPPPPPPPPPPPPPPPRE 235
6.5.1 An Overview of Phaser Implementationcccoeceevvueenceeensieeniieenieesieesieesiee s 235
6.5.2 AN EXaMPle Of USING G PRASENcooueeeeeiiiiiieeseeeeeseeee et 236
6.6 SUMMARY . s 238
6.7 EXERCISES. c.vtenttenteenteenteeuteeuee sttt st e st e bt et sabesabesbee s bt e sbe e bt e bt eae e e bt e eb e e be et e ea b e e b e sanesabesaeesbeenbeenneenes 239
SYNCHRONIZED COLLECTIONScciiiiiuteiiinneiiisneesiisstesssssstessssssesssssssesssssssesssssssesssssssesssssssessnns 241
7.1 ARRAYBLOCKING, SYNCHRONOUS, DELAY, AND PRIORITYBLOCKING QUEUESeeveereereereerenreneennes 242
7.1.1 The BlockingQUEUE INTEITACEuueeeeieieeeiiee e eeeieeee st eettaaeestaa e e e svaaeeessaseesanaeas 242
7.1.2 ArrQyBIOCKINGQUEUEc...eeeeeeeieieieeeiit ettt ettt ettt site et teenaeeesneenanes 243
7.1.3 SYNCATONOUSQUEUEveeeeieeeseeeeeetieeeette e s ste e e sttt e e s aastaessstaessasseaessssesasassnassansenaans 249
7.1.4 DeIAYQUEUEc...eeeeeeeeeeeeeee ettt et ettt e s e et e s e nateesneenanes 253
7.1.5 PriorityBIOCKINGQUEUEc....ueveeeieeeeeeeciieeee e eeeeetttea e e e e ettt e e e e e e e s sataaaaaaeeesssssaneaaaeenaas 258
7.2 CONCURRENT MAPS, QUEUES AND SET..uuuueieeeeeetruuiieeeeerersrsneaeseesrssssnneesessssssnnnesessssssssnmnesesssssssnnnnns 262
7.2.1 CONCUITENTHASAIMIQP.cevveeeeeiieeiee et e ettt e e e e e ettt e e e e e e e s attaaaaaeeessssseseaaaeeeaas 262
7.2.2 ConcurrentLinK@AQUEUEc...coovueeriiiiiiiieiiieieeiee ettt 269
7.2.3 ConcUrrentLinK@AdDEQUE..............ccoecueeeeeeeie e e eeteeeeeee e e ttte e e st a e sttt e e s ssasassssaaesssseeanas 274
7.2.4 CoNCUITENESKIPLISEMOP.......ccccceeeeeeeeeeeeeeeieeeeee e e stee e e te e e ette e e ssteaestteeassaseaasssseassssseeaaas 279
7.2.5 CONCUITENTSKIPLISESELvveeeee ettt e st e st e e e s tte e e ssteaessteaessasaaassssnasassseeanas 289
7.3 LINKEDBLOCKING AND TRANSFER QUEUESc..vtrurerieerieenieenieettetteneesseesneesreereseresenesinesmeesmeesseenseenns 295
7.3.1 LinkedBIOCKINGQUEUE.......cccccceeeeeiee et e e ettt e e e e ettt e e e e e e e sttt aaaaeeesssssanaaaaeeaans 295

7.3.2 LIiNKEABIOCKINGDEQUE........ccccceeeieeeiee ettt e e e ettt e e e e e e sttt aa e e e e e e sssssanaaaaaeeaas 301

Vi CONTENTS

7.3.3 LinKedTranSfErQUEUEcooueeeueienieeiteeeet ettt ettt naee e 308
7.4 COPYONWRITE ARRAYLIST AND ARRAYSETeviiiiiriieiiireeesirteessreresesiree e siraeessreeesssreeessanneessnneeeas 313
7.4.1 COPYONWIIEEAITAYLISTcceoiiieiieieetiee ettt ettt 313
7.4.2 COPYONWITEEAITAYSEL ...neeeeeeeeeeeeeietesesesesesesesesesesssssssssssssssssssssssssssasssssssssssssssssssssssssssssens 319
7.5 SUMMARY....tetteiteeteesteesteese st eseeeseesbe e s e e b e saresesesbeesbeesbe e bt ese e eaeeeseeab e e b e e b e eanesanesanenbeenree st enneenes 320
7.6 EXERCISES -.envtetteteete et et sttt sttt et et set e sae e s bt e s bt e bt et et she e e b e et e e r e s anesanesaeesbe e bt eneteneeeneeereereens 321
8 PARALLEL PROGRAMMING USING THE FORK-JOIN FRAMEWORKcovcuerrinureriisneesissnennanne 323
8.1 THE FORKJOINTASKKV> CLASS ..eteiuirieeiireeseiirieeseirte e st e s et eesnae e s sneeesesmneeesmnneessanaeesenneeesnnnes 324
8.1.1 The ForkJoinWorkerTRread CIASSccueeeecuueeeeeiieeesieeeesciieeeesieeessieaessieaessssasssseneens 324
8.1.2 The FOrKJOINTASK ClASSvvveeiieeeeiisessieeeesiteeeesitee s ste e e st e e s sataeessttaaessstaassasseassssseeaens 327
8.2 THE FORKJOINPOOL CLASS....c.uveeuteeutesieesieesieesteenteenteeatesatasseasseesteensesasasasesaeesaeesseenseensesnsesssesssensanns 330
8.3 THE RECURSIVEACTION CLASS. ..c.uteeuterurerieesteenteeteeeesueesseesseesseesesasesasesseesseesueenseensesnseeneessessseenseens 336
8.3.1 Definition of the RecursiveACtiON CIASSccueeeeeueeeeiieieeesiieeeesieeeeesiteeeeesiaeseesssaeesisseaens 336
8.3.2 AN EXAIMPI....coeeeeeeeeeeeeeeee ettt e et e e ettt e e ettt e e ettt e e e ettt e e et a e e st e e e e e tba e e e rtaaeesraaaans 337
8.4 THE RECURSIVETASKKV> CLASS ..cciiiiiiiiiiiiec ittt s saa s s 340
8.4.1 The Definition of the RecursiveTaSK ClASSccecvueeeecueeeesiiiieeeeiieessiieeescieaeecieaesssieaens 340
A o I 3 o o o] L= RS 341
8.5 FORKJOINPOOL’S ASYNCHRONOUS CALLS (EXECUTE AND SUBIMIT) «evvveeeurreeeenreeeeereeeeernreeeeenneeeeesneeeenns 344
8.6 SUMMARY ... ctttteiiittee sttt s sbae e a e s e b e s s a e e sab e e e s s b e e e s ba e e s b b s e e e a e e s ba e e s raa s 346
8.7 EXERCISES 1.vtteiiutrieiiiriieiiitte sttt sttt et s eaba e s bb e e e e bb e s e s b e e e sba e e s s b e e e s ba e e s sbbe e s s sabaeesnes 348
APPENDIX A ALGORITHIM ANALYSIS ...cooiiiiitiiiiieeiiiisieniisstesisssesssssssesssssssesssssssesssssssssssssesssssssssssnns 349
AL THE BIG-O NOTATION ..cetteiieitete et sttt ettt ettt s siee st sreesae e sa e e eere e neen e e resenesanesaeesreenneenneenes 349
A.2 GROWTH RATE COMPARISONveeuviueiemtinteesreereereeresiresieesseesseesstesesmeesmessneessesnessresanesenesmeesseesseenseenns 350
A.3 RUNNING TIME ESTIMATES.eetteteeieeeieesteesreere et et sieesieesreesseennt e e et e smeesne e re e neeresenesenesenesreenneenneenns 353
A.4 PROBLEM SOLVING EXAMPLESccuvtiueieitieieenreereereereseesieesreesseesat e et et smeesneesneenesresenesenesmeesreesneenneenns 354
A.4.1 Maximum Subsequence SUM PrOBICM: O(N>) o.....ooveeeeeeeeeeeeeeeseeeseeeseeseeeseeseeeses s neesessans 354
A.4. 2 MAXIMUM SUBSEQUENCE SUM PROBLEM: O(NZ) .. 356

A.4. 3 MAXIMUM SUBSEQUENCE SUM PROBLEM: O(N) (an Online AlGorithm)c......... 356

CONTENTS

A.4. 4 Array sub-array product Problemccoeeeeveiinieesiieieet e
A 4.5 TWO-SUM-TO-K PrODICM ...ttt
ALS LINKED LIST EXAMPLESceutteutteuteeutestteteetesatesutesttesteesseestesaeesutesseasbeanbeenbeentesatesatesheenseenseensesnsessaesseans
A.5.1 ReVersing G lINKEA [iStccc.eeeueeeiiieiiet ettt
A.5.2 Detecting Circularly lINKEA [iSt...............ueeeeuveeeeeieie et et e ee e et a e et a e e sraaaesraea e
ALB HASHTABLE EXAMPLEScoutteutieitieieesteeteete st st siee st este e et st sseesneesb e et e earesanesanesbeesbee st enneenseeneessnenneens
A 6.1 LIN@AI PIODING........oveveeneeeeeie ettt e ettt e ettt e e ettt e e e ettt e e ssaaa e e s tsasaeatseseessssaaesssenaaas
A.6.2 58PAIALE CRGINING ...ttt ettt ettt et et et sate e s e enanes
A.6.3 The running time estimates Of NASAINGccc.ooveeeveeesiiiieeieeeee e
A.7 BINARY SEARCH ALGORITHM AND BINARY SEARCH TREESceuvteuveeutieueesteeteeteeeesueesaeesaeesseensesneesnsesseesseens
A.7.1 Running Times of a Binary Search AlIGOrithimccoccueeveeeniveniieesiiesieeseesieee e
A.7.2 A BiNAIY SEAICH TrEE.......eeeeeeeeeeeeeee et e ettt e e e ettt e e e ettt e e e s etaa e e e st aaestseaesssssaaesasenaans
A.7.3 Traversing @ DiNAry SEAICA trEueeeeuveeeeeeieeeeeeeeestte e et e eecae e e steeaeesseseesssaaessenaans
A.7.4 Breadth-FirSt TIAVEISAlcocueeueriiriesieeeitettee ettt ettt ettt saeenaeeieas
A.7.5 Finding the closest common ancestor of two child nodes in a binary tree............................
A8 SORTING EXAMPLES.....c.vtetieutiiitiiieieteett et st sttt sre et st r et r e senesanesaeesreesreentemnsennesrnesneens
A.B.T QUICK SOIt ...ttt sttt
AB.2 MEIGE SOIT oottt ettt ettt ettt et et et et et et et et et et et et et et et et e e et e eararararaaaes
A.9 INTERSECTION AND UNION EXAMPLESvttiiiiiiiiiiiiieiiiiie st sine et e s sine s snra e s sna e s snns e snnns

AL LD EXERCISES. . eeeeeeuuuueeeeererersnaeseeeresssunaeeseesssssnsnnsesessssssnsnasesessssssnnesessssssssnnseseesssssssnnsesesssssssnnneesessssses

IX

List of Programs

Listing 1.1 Dekker’s algOrithim..........cooiiiiiiiii e bbb e 5
Listing 1.2 Peterson’s al@Orithm..........cccuoiiiiiiiiiiiic e nree 6
Listing 1.3(a) The Bakery Algorithm (original fOrm) ... 7
Listing 1.3(b) The Bakery Algorithm (revised fOrm) ..o 8
LiStiNG 1.3(C) BAKEIY.JAVAueveiiitiiiiiiiiiteeeste st bbbt bbb 9
LiSting 1.4 RUNNGDIE.JAVA.......cviiiiiiiiiie bbb bbb b 13
Listing 1.5 Thread.java (PArtial)ccoooeiiiieeie bbb 14
Listing 1.6 The start method of the Thread Class...........ccoeiiiiiiiiii e 16
Listing 1.7 The run method of the Thread Classcooveiieiiie i s 16
Listing 1.8(2) NEWTNIEAU.JAVAeeiueeiieeiii ettt sttt sta e be e beeaeesae e e sneesaeenas 19
Listing 1.8(D) MaiNThread.JaVa........cccveieeie ittt e st sbe e be e ae e e snnesneenas 20
Listing 1.9(2) EXteNdEdTRIEAAJAVAccueiueiiieiiiieie et e e eneas 21
Listing 1.9(0) MaINTRIAAZ.JAVA.........coiitiieiiiiiieee ettt ettt ettt sb e b eneas 22
LiSting 1.10(8) MESSAGET.JAVA ...c.eiveeereiterieieite ettt sttt sttt sttt sttt s e bttt be bt et e st see st st b ene et 24
Listing 1.10(b) MeSSagETRIEAUJAVAc.veueiueieiiiieiieiesie ettt ettt e s 25

Listing 1.10(C) SYNCRTESLO.JAVAeveviiveieieiteieeiesie ettt st ettt sttt sttt ettt 25

Xl

LiSting 1.11(8) MESSAGEIL.JAVAcueivereieiteieeieete ettt sttt bbb bbbttt b 26
Listing 1.11(b) MeSSageTNIEAALJAVAccueiveieireieiiiteiieieste ettt 27
LiSting 1.11(C) SYNCRTESEL.JAVAcuviveieiiiteiieieiteieeie sttt et 27
Listing 1.12(2) SIMPIEBUFTEIJAVA.......c.cviiiiiiieice e 29
Listing 1.12(b) SimMpPIeBUTTErTESLJAVA.ccueveieirerieieiteieeste e 30
Listing 1.13(2) PrOUUCETJAVA.......cuecuveiiieieiiestesiesteeiee e e stestesteeraese e e stestestesteenaeseensesseseestesneenseseeseseensens 30
LiSting 1.13(D) CONSUMET . JAVA....c.ueivrareeeerieieestesieaseaseeeeeessessesseassasesssessessessessesssesssssessessessessessessensessessens 31
Listing 1.13(C) SImMpPIeBUFEITESLJAVA......uiiieieeie ettt ae e annas 31
Listing 1.13(d) SIMPIEBUTTEIJAVAccveiieiic ettt e te e be e steeeeaneas 32
Listing 1.14 SImPIEBUFTEIJAVAccviiie e sttt e ste e te e teeeeaneas 35
Listing 1.15 SimpleBuffer.java with guarded DIOCKScccoiiiiiiiiini e 37
Listing 1.16 SimpleBuffer.java that acts [iKe & QUEUE.........c..ccviirieiiince e 40
LASTING 1.17(8) XJAVA 1.ttt ittt ettt bbb bbb bbb bbb bbbttt b et nbe e 42
LASTING 1.17(D) Y .JAVA ...eiteiteieieite ettt et bbbt b ekt b et b et b e 43
Listing 1.18(2) DeadlOCKDEMOD.JAVAccueveviiieieieite ettt 44
Listing 1.18(b) DeAdIOCKDEMOL.JAVAccueveiiiieieiiiierieie sttt sttt sttt et 44
Listing 1.19 Thread dump for the deadlock example (partial)ccooveiieeiiiii i, 47
Listing 2.1 The Callable INtEITaCEcue it re e 54
Listing 2.2 The FULUIE INTEITACEcve ettt et e te e steeneaneas 54
Listing 2.3 FutureTask.java (Partial)ccccoeieiieiie sttt et ae e 58
Listing 2.4 AbstractExecutorService.java (Partial)ccccovevveiiiie i 60
Listing 2.5 ThreadPoolExecutor.java (Partial)ccceireiieiieiiee e 61
Listing 2.6 ScheduledThreadPoolExecutor.java (Partial)ccccooeieniiininiiiieee e 64
Listing 2.7 One submit method and one schedule method from ScheduledThreadPoolExecutor............. 66
Listing 2.8 The DefaultThreadFactory INNer CIass ..o e 68
Listing 2.9 The newSingleThreadEXecutor MEthod...........ccoveiiiiriiiiiineie e 69
Listing 2.10 The FinalizableDelegatedEXECULOrSErVICe Classcccoveiiereiineneise e 69
Listing 2.11 The newFixedThreadPool method for the Executors utility Classccccocvverviiiencicnennn 70

Listing 2.12 The newCachedThreadPool method for the Executors utility Class............ccoovoiviiiiencncns 70

Xl

Listing 2.13 SIMPIEESDEMOODJAVAccveveiiieirieiiiieiieesie ettt 71
Listing 2.14 SIMPIEESDEMOLJAVAccveveiiitiiieiiiierieie ittt sb e b e 72
Listing 2.15 SIMPIEESDEMOZ.JAVAccveveuiiiiiieiiiterieie sttt ettt 74
Listing 2.16 SIMPIEESDEMO3.JAVAccveveiiieiiieiiiterieie ettt b e 77
Listing 2.17 SIMPIEESDEMOA JAVAccueveiiiiiiieiiiteieie ettt bbb 78
Listing 3.1 The Iterable INEITACEooiiieiiie e 86
Listing 3.2 The Herator INTEITACEcccviiie et e et e eesresresneaneas 87
(I] Lo R TR A @ o I [<Tox 1[0 T 1Yz U 87
Listing 3.4(2) The SortedSet INtEITACEviii i 89
Listing 3.4(b) The NavigableSet iNterface.........c.coviiiiieiiee e 90
I] Lo TR TR T I £ [(=T (ot S 91
Listing 3.6 LiStIterator INTEITACEccoiiiiiiiiicre e 91
Listing 3.7 The QUEUE INTEITACEc..oiiiieiie ettt 92
Listing 3.8 The DeqUE INTEITACEcviirieiiiieeere e bbbt 93
Listing 3.9 The ADSIFACISEE CIASSc.viviieiiiiiee bbb 95
LiSting 3.10 The HASNSEL CIASS.......eveiiiterieiiiteieeiesie ettt bbb 97
LiSting 3.11 HASNSEDEIMOJAVAc.veueiveieieiteieeie sttt sttt sttt sttt sb e et sb et b e 98
Listing 3.12 LiNKEAHASNSELJAVA.c..eiiieiiiiie ettt be e be e ae e neesneesne e e 99
Listing 3.13 LinkedHaShSEtDEMO.JAVA........ccviiiiieciiiie sttt be e ve et e st e teesae e 100
I] Lo TR TN R I T - AT 1Y PSSRSO 101
Listing 3.15 TreeSEtDEIMO.JAVAciveiieeiieeiteeiie ettt ettt e e te et e este e saeesbeentesseesssesreenteesreesaeeseeas 102
Listing 3.16 AbastractList.java (PArtial)ccccceecueiiiiieiicce e 104
Listing 3.17 ArrayList.java (PArtial)ccceiveiiiieciecie s 106
LiSting 3.18 ArrayLiStDEMO.JAVAeviuiriiieiiriiieiisie ettt bbbttt e see s 108
Listing 3.19 Output of running the ArrayLiStDemo.java Programccoeeererinieneneeseneeseseeseseens 109
Listing 3.20 AbsStractSequUENtIAILISE.JAVA.cuerviiriieiiiiesee et 110
Listing 3.21 LinkedList.java (PArtIal)ccocoiririeireeiieeseses e 113
Listing 3.22 LiNKEALIStDEMOJAVAcuviuiiieiriiieiisieieisie ettt sttt e 115

Listing 3.23 Output of running the LiNKedLiStDEMOcc.coiriiiiiiiiieieiee e e 116

XV

Listing 3.24 ArrayDeque.java (PArtial)coooirireiiiieiee e 119
Listing 3.25 ArrayDeqUEDEMO.JAVAc.veuirviiiiiitiieiinieieie ettt bbbt 121
Listing 3.26 AbstractQueue.java (PArtial)coeoeiriiiirc e 122
Listing 3.27 PriorityQueue.java (PArtial)ccovereiriiiieeee e 123
Listing 3.28 PriorityQUEUEDEMOJAVAcoveviuiriiieiiriiieiisieeeies ettt bbb 125
I T alo ST N Y- T - Y- SRS 128
Listing 3.30 SOMEAMAP.JAVAc..evirverieitesieireiesieste e stesesseeseeeesaeseestestesteeseessesaesseseesaesresseesseseeseseessenees 129
Listing 3.31 NaVIgableMap. JaVAcccuiiieiie ettt e et nae e ae e s e nnaenreens 130
Listing 3.32 AbstractMap.java (PArtial)ccccoeiieeieiie e 131
Listing 3.33 HashMap.java (Partial)ccceieriiiiieiie e st ae e esraennaens 133
Listing 3.34 HaShMaPDEMO.JAVAc.erveriiiiriinieiiriiieiinieie ettt bbb 136
Listing 3.35 LinkedHashMap.java (Partial) ..o e 138
Listing 3.36 LinkedHashMapDeMO.JAVAc..cuiiiiiiiieirieeeis et 140
Listing 3.37 TreeMap.java (PArTIal)ccooireriiiiiie e 142
Listing 3.38 TreeMapDEMO.JAVAc.civiiiiriiiiiirieieiinie et bbbt sbe e 143
Listing 3.39 Collections.java (with the addAll method only) ... 145
Listing 3.40 ColleCtiONSDEMO.JAVA.........ccveiieiieeiieeite et ete st et e st ste e e ae s e s estaesteesteesteeseansesseessaesreens 146
Listing 3.41 FregenCyDEMO.JAVAcc.ccviiieiiesiee it e st esieeee et e st et esta e e e e e e s raesteesteesteasteenseensesssesssesreens 147
Listing 3.42 CheCKedSetDEMO.JAVA........ccveiieiieieeiteeite et sttt ste e e ae s e st e e e steesteensesnsesseesnaenreens 149
Listing 3.43 CheCKedSetDEMO.JAVA.........cciveiieiieiiee e crie et ste et te e e ae e s teesteesteesteenseansesseesraenreens 151
Listing 3.44 ASLIfOQUEUEDEMO.JAVAcveivieiiieiieeiieciie ettt te e e s ste e ste e steeae e e sseesraenseens 154
Listing 3.45 NeWSetFromMapDEeMO.JAVAcccccviiiiiieiie et sre e ste e re e e sraenreens 155
Listing 3.46 EMPLYLISDEMOJAVAcoveiieiriiiiiiriiieiisie ettt 157
Listing 3.47 SIiNGIEtONDEIMOJAVA.c.ciuiiiiriiiiiirieeiisie ettt sttt bbb sae e 158
LISTING 3.48 AFTAYSJAVA .. .vivetiitiieiiietiste ettt ettt bbbt bbbt e bttt s be st e b et ebe b e e 160
Listing 4.1 AtomicInteger.java (PArtial)........ccooorereiriiee e 167
Listing 4.2 AtOMICINEIEIDEMO.JAVAc.cciriirieiirieieiirieiei ettt bbb 169
Listing 4.3 AtomicIntegerArray.java (PArtial)cccoereiiiniine e 172

Listing 4.4 AtomicINtegerArrayDEIMO.JAVAcc.coeruiriiriiiiiaieeie ettt sttt bbb e see e e 174

XV

LASTING 5.1 LOCK JAVA ...tttk bbbttt nn 180
Listing 5.2 ReentrantLOCK.java (PArtial)...........cooeiiiriiiiiieeee e 182
Listing 5.3 REeNtrantLOCKDEMOJAVA.cviuiriiieiiriiieicsiesiees et 185
Listing 5.4 REAAWITELOCK JAVA.oviviieiiiiiiiee st 187
Listing 5.5 ReentrantReadWriteLock.java (Partial)ccoeoiiriiiniieeeseese e 188
Listing 5.6 ReentrantReadWriteLOCKDEIMOJAVA.c..ciiviriiiiriiieiiieitesie et 193
(I a0 IR @0 oo 1) (o] T T V7 USSR 195
Listing 5.8 BOUNAEABUFTEI . JAVAcivveiiiiie et sttt e teesae e 196
Listing 5.9 CONAItIONDEMO.JAVAccvveiiieiieieesie et e e ste e s te e ste e eneesneesraenteesreesaeeseeas 198
Listing 5.10 AbstractOWNableSYNCNIONIZEr JAVAcccueiieiieiieie e st sae e 199
Listing 5.11 AbstractQueuedSynchronizer.java (Partial)ccoccveveiieiie i 202
Listing 5.12 AbstractQueuedLongSynchronizer.java (partial) ..o, 207
Listing 6.1 Semaphore.java (PArtial) ..o 212
Listing 6.2 SeMaphOrEDEMO.JAVAc.ccuiruiiiuiriiieiisieieiste ettt bbbttt bbbt b neins 215
Listing 6.3 The result of running the SemaphoreDemo Programc.ccoeerererinieneneiesenee e 217
Listing 6.4 The result of running the SemaphoreDemo program with semaphore’s acquire() and release()
MEthOAS COMMENTEU QULoieiiieieeeieeee ettt e st e st e st eteeseeneeseeneeseesneereenens 217
Listing 6.5 Buffer.java guarded by SEMAPNOrEScccveiiiiieiice e 218
Listing 6.6 SEMAaPhOreDEMOZ.JAVAccuveiieeiieiiiecie e ctee sttt e e te e e et esae e ae st e sssesbaenteesbeesaeesneas 219
Listing 6.7 CyclicBarrier.java (Partial)..........cccooviiiiiiic e 221
LiSting 6.8 Barrier ACHON. JAVAcveiieiie ettt ettt te e s ae et e e naesseesnsestaesteesteesaeeseeas 223
Listing 6.9 CycClicBarrierDEMO.JAVA.........cccveiiiie ettt ae et srs e reesbe e beeae e 224
Listing 6.10 COUNtDOWNLAICN.JAVA.cc.veiieiieiiie ettt sre e esbe e beesae e 226
Listing 6.11 CountDOWNLAtCADEMOJAVAeveiirieieiiiiiieiisenesie e 227
Listing 6.12 CountDOWNLAtChDEMOZ.JAVAcveuiiieieiiiiiieiisieseesie ettt 228
Listing 6.13 Node class embedded in EXCRANGETccoiiiiiiiiiiecee e 230
LiSting 6.14 EXCRANGETJAVAeuviuiiinieiirieieiisie sttt sttt sttt et 231
Listing 6.15 EXChaNQGErDEMOJAVAc.ccuiiueiieiriiieiisieiei sttt sttt st e seens 233
Listing 6.16 EXChaNQerDEMOZ.JAVAccuuiueiuieiiieie ettt sttt ettt ne b e b 234

LiSting 6.17 PRASEIDEIMO.JAVA.c.ueuiiuiitiriiaiietieieie ettt ettt st bttt e e e et b bt b e eneese e b e nbesbeebesne e 236

XVI

Listing 7.1 BIOCKINQQUEUE JAVA........c.civiiiuiitiieiiiteieiist ettt 243
Listing 7.2 ArrayBlockingQueue.java (Partial)...........cocooeiririeirineiseeesese e 244
Listing 7.3 ArrayBlockingQUEUEDEMO.JAVA..........eiveuiriiieiiiieieise et 248
Listing 7.4 SynchronousQueue.java (Partial)...........cccoereiririinieee e 250
Listing 7.5 SynchronOUSQUEUEDEMO.JAVA.........c.ciuiviiiriiieiirieier et 252
Listing 7.6 DelayQueue.java (Partial)c.cceierereieiisesieeeseese e et e et e e sre e 254
Listing 7.7 DelayQUEUEDEMO.JAVAecueiieeiieieiiiesieste e eteesee e ste e te e ste e e esaestestestestesteenaeneeneeeesrenes 256
Listing 7.8 PriorityBlockingQueue.java (partial)ccccvooviiiiiieii e 259
Listing 7.9 PriorityBlockingQUEUEDEMO.JAVA.........ccecvviiiiciicieciie et 261
Listing 7.10 The HashEntry class embedded in the ConcurrentHashMap Classccccceevicviiieiieninns 263
Listing 7.11 The Segment class embedded in the ConcurrentHashMap Classcccoovervienennienennn. 264
Listing 7.12 ConcurrentHashMap.java (Partial)..........c.ccoerireiiineeeee e 265
Listing 7.13 ConcurrentHashMapDemMO.JAVA.ccveiririiiriiieisees e 267
Listing 7.14 Output of running the ConcurrentHashMapDemo programccccceeeeeenenieieneneenennene 268
Listing 7.15 Node class embedded in ConcurrentLinkedQUEUEcooveiierieriiiniincneee e 269
Listing 7.16 ConcurrentLinkedQueue.java (Partial)ccocereirireinieniseneses e 270
Listing 7.17 ConcurrentLinkedQUEUEDEMO.JAVAcc.ecvviiiiiiiiiecie et 272
Listing 7.18 Result of executing the ConcurrentLinkedQueueDemo.java programcccceecveevernnns 274
Listing 7.19 The Node class embedded in ConcurrentLinkedDeque Classcccccevvvevveiecciicciesieninns 274
Listing 7.20 ConcurrentLinkedDeque.java (Partial)cccovveiieiieiieiiee e 276
Listing 7.21 ConcurrentLinkedDequeDEMO.JAVAccecviiiiiieirieieee e se et sre e esae e nreens 277
Listing 7.22 Result of executing the ConcurrentLinkedDequeDemo.java programc.cccceevveveennnns 279
Listing 7.23 The Node class for the ConcurrentSKipLiStMap Classccocvererieneinienensieneee e 281
Listing 7.24 The Index<K, V> class and HeadIndex<K, V> class for the ConcurrentSkipListMap class

.. 282
Listing 7.25 ConcurrentSkipListMap.java (Partial)ccoceveirinnnieneeesees e 284
Listing 7.26 ConcurrentSKipLiStMapDemMO.JAVAcccerueririirieiriinieisenieisie e 285
Listing 7.27 Result of executing the ConcurrentSkipListMapDemo.java programcccceeeeeereneane 288
Listing 7.28 ConcurrentSkipListSet.java (Partial)ccooeeeiroieiiieeeeeee e 290

Listing 7.29 ConcurrentSKipLiStSEtDEMO.JAVA.cciiuiriiiieiieieie sttt 292

XVII

Listing 7.30 Result of executing the ConcurrentSkipListSetDemo.java program............ccoceeeeerenreennen. 294
Listing 7.31 LinkedBlockingQueue.java (Partial)cocooeirereiriniesesesesese e 296
Listing 7.32 LinkedBloCKINGQUEUEDEIMOJAVAveveuiriiiiiinieieiisie ettt 299
Listing 7.33 Result of executing the ConcurrentSkipListSetDemo.java program............ccoceeeevrereennen. 301
Listing 7.34 LinkedBlockingDeque.java (Partial)coooeirireiiinieiieseese e 303
Listing 7.35 LinkedBloCKiNgDeqQUEDEIMO.JAVAeveuiriiiiiirieieisiesieisie et 306
Listing 7.36 Result of executing the ConcurrentSkipListSetDemo.java program........c.cccceeeeresesrennnnn 308
Listing 7.37 LinkedTransferQueue.java (Partial)cccccevieiieiiiie e 309
Listing 7.38 LinkedTransferQUEUEDEMO.JAVAc.eciiiieiieiice e sae e 311
Listing 7.39 Result of executing the ConcurrentSkipListSetDemo.java program...........cccocevvereereennns 312
Listing 7.40 CopyOnWrite ArrayList.java (Partial)c.ccceeveiieiiiie e 314
Listing 7.41 COWAITAYLISIDEIMOJAVA.c.ccuirviieiiriiieiisieieiesie ettt ne s 317
Listing 7.42 Result of executing the COWArrayListDemo.java Program........cc.eoeererseneniseneneeennens 318
Listing 7.43 CopyOnWrite ArraySet.java (PArtial)ccoceoeirineiiiieeseese e 319
Listing 8.1 FOrkJoiNWOrKerTHrEad JAVA.couerveiriiiiiriecse et 325
Listing 8.2 ForkJoinTask.java (PArtial)ccoeoeireriirieieee e 328
Listing 8.3 FOrkJoinPool.java (Partial)ccoeoeiieniiiieee e 332
Listing 8.4 RECUISIVEACLION.JAVAecvveiiieiiieiieecie ettt e et ste e s te et e e e eneesnsesteente e teesaeeseeas 336
Listing 8.5 ReCUrSIVEACHIONDEMO.JAVA.cciueiiieiieiieciee st estee e steesaeseeseesteesteesbeebeessesssessaesteesteesaeeseeas 337
Listing 8.6 Output of running the Recursive ACtionDEMO Programccccceeveevueeieeeiesieseeseeseesieeseeas 339
Listing 8.7 RECUISIVETASK.JAVAc.veiiieiieeiieeiieeiteeteetesttesteesta e teestesaessaestaesteesaeesteenseansesssesseesseesteesaeeseeas 341
Listing 8.8 ReCUrSIVETaSKDEIMO.JAVAeciueeiieiiieiieceiestie st ste e e ste st ste e s te et e aessaesssesreesraesbeeaeesneas 342
Listing 8.9 Output of running the RecursiveTaskDemo Programccccoceeveereeieeiesiieseeseeseesiesinens 344
Listing 8.10 ASYNCRIrONOUSDEMO.JAVAc.viuiriiieiirieieiinieiesesie ettt ettt seens 345
Listing 8.11 Output of running the ASynchronousDEMO Programccoeevvererieeneneeseneeesieneeneneens 346
Listing A.1 An O(n®) algorithm for solving the max subsequence sum problem...........c.cccoeevveeeennene. 355
Listing A.2 An O(n?) algorithm for solving the max subsequence sum problem.............cccoeeevreeennene. 356
Listing A.3 An O(n) algorithm for solving the max subsequence sum problemcccccoerviienneen. 357

Listing A.4 ArraySUDPIOGUCES.JAVA.......ccuuitiiieiiiiiie sttt sttt bbbt ne b e b e 358

XVl

LiSting A.5 TWOSUMTOK JAVAc.viuiiuiiiiiitiiteiieiisteiet stttk bttt 359
LiStiNG A.B LISINOUE.JAVAcueivieiiiieiieiiet ittt bbb 360
Listing A.7 SINGIYLINKEALISTJAVAccveviiiriiieiiiteieiinee et 361
Listing A.8 Reversing @ liNKed FiSt............cciiiiiiii e 363
LiSting A.9 LiNKEOLIST.JAVAccviviiiitiieiictiite sttt bbbttt 363
Listing A.10 DeteCtCIrCUIArLISt.JAVAccveieieiiie ettt sttt st e e sre e 367
Listing A.11 Output of running the detecting circularly linked listc..cccoeveiieiiiiiiie e, 368
Listing A.12 LinkedHashTableDemO.JaVa........c.cccueiiiiiiiiecieciesie et sae e e nneens 373
Listing A.13 A binary search algorithmccoiviii i 376
Listing A.14 BSTNode class (getters and setters are 0mitted)cccvevevieiiieiiinsiee s 377
LiSTING ALLD BST ClASS ...ttt bbbt b e 378
Listing A.16 Methods for traVversing @ BSTcooiiiiiiiiiieie e 380
Listing A.17 breadthFirst traversal fOr @ tree ... e 381
Listing A.18 Finding the closest common ancestor of two child nodes in a binary tree ... 382
LiStiNg A.19 BSTDEMOJAVA. .. .vtviuiieiriiiiitinteiieie sttt bbbttt b ettt bbbttt b 383
Listing A.20 QUICKSOIMDEMO.JAVA.cueviuirteniiiirieieiisieie sttt bbbttt 384
Listing A.21 MergeSOrtDEIMO.JAVAc.ccveiieiieeiee e et eee st e st e st sta e e ae e s e e s teesteesteesteenseansesssesseenreens 387
Listing A.22 InterseCtioNANAUNIONJAVAciveiieiiieiiie ettt se e e et ee e ste e ste e saeeae e e sseesnaenreens 388
I] Lo T S T ST Lo [0 I -1V USSR 393
I] Lo S T O T - |V WSS SPSSPR 395
LiStING B.3 DIIVEIJAVA.....ccueiiuieitieiieieeie s e st s e te e ste et e st e st e ba e beesaeesaesseesteesteeateaseenseensesseenreenseans 397

Listing B.4 SAMPIe teSt OULPULcviiiiiie ettt e e sre e ste e ste s e st e eseesraesreens 397

Table of Figures

Figure P.1 Statistics on popularity of programming languAgES...........ccccureirererienieneseee e, XXiv
Figure 1.1 A job consisting Of tWO CONSECULIVE STAGESeiveririerieirieriee et 1
Figure 1.2 Possible states 0f @ thread..........ccooiiiiiii e 12
Figure 1.3 Fields and methods for the Thread Class...........ccoeieiie i 18
Figure 1.4 Main and child threads with un-deterministic sequence of eXecutionscccccceevvervvevennnene, 21
Figure 1.5 Sequences interleaved between the main and child threads out of four runs: one is different

TrOM The OTNEE TNFEE ... bbb bbbttt e bbbt e ne e 23
Figure 1.6 Livelock that occurred with the busy-wait/unsynchronized SimpleBuffer example.................... 33
Figure 1.7 The states of the Producer and Consumer threads when a livelock occurred..........cccoceoveenne, 34

Figure 1.8 The SimpleBuffer starvation situation: The Producer was stuck after filling the last element
while the consumer was stuck after retrieving the first element..........c.ccocovreniiiiniiine, 36

Figure 1.9 Thread states in the starvation situation: One was in RUNNABLE state while the other was in
BLOCKED State PEIMEANENTIYcoveiiitiiieiiteiieieete ettt ettt sttt sb et nbe et e 36

XX

Figure 1.10 States of the Producer and Consumer threads with the SimpleBuffer class implemented with

QUATTEA DIOCKS ...t b bbbt bt b et 39
Figure 1.11 Zero CPU usage during the deadlock Periodcccoereiiiieiiineiiencc e 45
Figure 1.12 A deadlock detected on the jvisualvm toolccooiiiiiiiiii e 46
Figure 2.1 The Java thread EXeCUtOrSEVIoe fraMEWOIKccooiriiiiiieiieseese e 53
Figure 2.2 The FUIETasK Class NIErarChYccoeiiieiiiiiie e 58
Figure 2.3 Methods of the AbSratEXECUIOISEIVIOR ClaSSecvireieieie e ee et nrea 59
Figure 2.4 ThreadPOOIEXECUION'S CONSIIUCTOTSvvivretiesrieseesiiesieesieesteesseessesssesssesseesseesseessesssesseesseessesssesnsennes 63
Figure 2.5 More methods for the ThreadPOOIEXECUION CIaSSccivveiieeiieeieiiecie e 63
Figure 2.6 The schedule and submit methods for ScheduledThreadPOOIEXECULOr ClaSS.......cvveveeveiieiie e 67
Figure 2.7 Static factory methods of the Executors utility Class...........coovviriiiiiniiiicc e 67
Figure 3.1 Java. Uil PACKAGEc.veueiueieiiiteieeteste sttt ekttt ebenn e 84
Figure 3.2 The interfaces defined by the Collections Framework.............cc.coceoviiiiniinieinncee 86
Figure 3.3 The Set COIECLION CIASSES.......c.iiveiiitirieiitere bbb et 94
Figure 3.4 The LiSt COIECTION CASSESoveiiitiiieiiiie et 103
Figure 3.5 The QUeUe COIIECTION CASSESc.civiieiiieiee e 118
Figure 3.6 The Map interfaces and ClaSSESc.viuiiieiiieii et nre e 127
Figure 4.1 () left: atomic operations; and (b) right: I0CKS..........ccccoviiiiiieiic e 164
Figure 4.2 Concurrent utilities contained in the javautil.concument packageccevvevieevveve e ece s, 164
Figure 4.3 The AtomiclntegerAmay class on ECHPSE IDE.........cooviii i 171
Figure 5.1 Interfaces and classes contained in the java.util.concumentlocks package.........ccooevevveeveiieiieninns 178
Figure 6.1 A Semaphore object has an instance of Sync, which extends AQS and is sub-classed by
NONFAIFSYNC AN FAIFSYNC ..ottt bbbt 210
Figure 6.2 Exchanging data among three threads ..o 235
Figure 7.1 The lineage for the ArrayBlockingQueue, SynchronousQueue, DelayQueue and
PriorityBIOCKINGQUEUE ..ottt ettt ettt ettt be e bbb 242
Figure 7.2 The Transferer class sub-classed by TransferQueue and TransferSEeK.......o.vevvvvereeieneciesecsieee 250
Figure 7.3 The structure of a ConcUMENtHASIMAD.oviuiieiieiee e e 280
Figure 7.4 The structure 0f @ SKIP TIST.........ooviiiiii e 280

Figure 7.5 The class hierarchy for the ConcumentSKIpLISIMap CIass.ccoeeireenere i 281

XXI

FIgure 7.6 NKEIISLIOGICeiveeeie ittt bbb ettt 306
Figure 8.1 Class hierarchy summary for the ForkJoin frameworkc.ccoccovniininciinieee, 347
Figure A.1 Growth rate comparison among functions of log(n), log?(n), n and nlog(n)cc......... 352
Figure A.2 Growth rate comparison among functions of n%, n®and 2"............ccc.cocvervecvecrecrereecieeenn. 352
Figure A.3 The maximum subsequence SUM ProbIEM.........c.ccoiiiiiiinei e 354
Figure A4 ATINKE TSt ..o 360
Figure A.5 A circularly linked list With 19 NOUES........cccoveieiiiisiie e 366
Figure A.6 A hash table data structure based on linear probingccccocvvveriierieiie s 372
Figure A.7 A hash table data structure based on separate Chaining..........ccccccevvveviieiieiieece s 372
FIQUIE A8 A DINAIY TrBE .. .iieeiee ettt st et e et e et e st e s be e te e te e te e tesseesneesneenreenns 384

Figure A.9 The core logic of the merge sort algorithmccccevveii i 386

Preface

WHY THIS BOOK

As we all know, Java is one of the most popular programming languages for developing applications,
especially enterprise applications. (For the latest statistics about the popularity of the programing
languages, refer to Figure P.1 on the next page.) Whether you are already using Java to develop exciting
cloud computing or big data or traditional enterprise applications or planning to enter these areas as a
beginner or an experienced Java developer, having a systematic understanding of the power and
flexibility that the modern Java concurrent programming frameworks offer is important. Applications in
these areas require high performance and scalability, driving unprecedented high demands for skills in
Java concurrent programming.

However, Java concurrent programming is one of the most challenging areas in terms of complexity and
unpredictability. Certainly, no books can be so helpful to turn anybody into an expert overnight, but the
approach to acquiring a new skill (programming or anything else) certainly matters. My observation is
that there are far more books in teaching general programming in Java than in teaching concurrent
programming in Java. Even though there are a few texts teaching concurrent programming in Java, they
are either outdated or not sufficiently systematic, coherent and comprehensive. This text attempts to fill
these gaps by taking a new approach that emphasizes more on understanding how various Java
concurrent programming models, collections, synchronizers and frameworks are actually implemented
internally. The text is also accompanied by many carefully-crafted examples.

XXIV

TIOBE Programming Community Index

Source: www.tiobe.com
30

Java
25
C Java

20 C++
g MW" — Objectlve -C
a s == Python
£ Visual Basic .NET
£ c++ Objective-C — pHp

== JavaScript
Delphi/Object Pascal

2002 2004 2006 2008 2010 2012 2014

Figure P.1 Statistics on popularity of programming languages

Of course, programming is both science and art, which means that one can get started as quickly as
possible, but it may take many years of experience to master it. Having said that, it’s not this book’s
objective to teach those who are already masters in this field. Instead, | hope that this book can provide
an easier entry into Java concurrent programming for those who are passionate about programming,
especially motivated and determined to develop high-performance and scalable Java software.

WHOM THIS BOOK Is FOR

Obviously, this text is for those who are interested in learning Java concurrent programming. The text is
based on how various classes are actually implemented internally. | took this approach in order to
minimize the possibilities of any kind of misperceptions and misunderstandings. Besides, a great
additional benefit out of this approach is that it gives all of us an opportunity to see and appreciate how
those masters coded all of those classes that we use every day for our Java concurrent programming
activities. Therefore, | am confident that this book will not only enhance your Java concurrent
programming skills specifically but also Java programming skills in general.

How THIs BooK IS ORGANIZED

XXV

This book consists of the following chapters:

Chapter 1 Multithreaded Programming in Java: This chapter starts with the most basic concept of
what a Java thread is about, and then helps you understand how to create a thread, how to use the
traditional implicit monitor locks to synchronize a method or a block of code, and how inter-thread
communications work. It also covers the concepts of livelock, starvation and deadlock and how to
detect them effectively.

Chapter 2 Java Thread ExecutorService Framework: This chapter focuses on understanding the
ExecutorService framework, which is the most commonly used framework for many real Java
applications to manage the lifecycle of the threads that perform various tasks concurrently.

Chapter 3 The Java Collections Framework: This chapter is dedicated to the unsynchronized
collections that are used in many real Java applications. These collections are covered not only
because they are important but also because their synchronized counterparts are built on them.
Chapter 4 Atomic Operations: This chapter introduces the atomic operations provided at the lowest
level, including the Unsafe class and the atomic classes for synchronizing single variables.

Chapter 5 Locks: This chapter introduces the finer-grade locks that are explicit and flexible,
including the ReentrantLock and ReentrantReadWriteLock classes.

Chapter 6 Synchronizers: This chapter covers all common types of synchronizers such as
semaphores, cyclic barriers, countdown latches, exchangers and phasers. The entire Java concurrent
programming framework would be incomplete without these synchronizers.

Chapter 7 Synchronized Collections: This chapter focuses on various built-in thread-safe lists,
queues, sets and maps. These synchronized collections are well-tested and should be used as much as
possible as it’s hard to build an application without using proper data structures, especially using
synchronized data structures if the application will be run in multithreaded environment.

Chapter 8 Parallel Programming Using the Fork-Join Framework: This chapter introduces the
Fork-Join framework for solving large dataset related challenging computational tasks in the realm of
parallel programming. This framework is becoming more and more relevant with the advent of new
areas such as cloud computing, big data analytics, and so on.

Appendix A Algorithm Analysis: This appendix gives an introductory review of algorithm analysis
to help you understand the performance characteristics of various operations associated with those
collections. This is an important skill to have for being able to choose proper data structures among
many of them to solve a particular problem.

Appendix B The Bridge Exercise: This appendix provides a reference implementation for the
classic bridge exercise.

My recommendation is that you start with Appendix A Algorithm Analysis, and then follow the sequence
of all chapters, which, from my perspectives, is the most logical way of learning Java concurrent
programming.

SOFTWARE AND HARDWARE

I hope that you do not just read the text but also try to understand all code snippets and examples as well.
In order to work on those examples, you need a PC and install a version of JDK 7, preferably with the

XXVI

Eclipse IDE as well. You can download all examples from this book’s website, import them into your
IDE, examine them and run them.

How To Use THIS Book
To achieve the maximum effectiveness and efficiency, the suggested way to use this book is:

1. Try to understand the concepts first at the high level, for example, why a class or data structure is
needed and what problems it helps solve.

2. Try to understand the partial implementation of a class by tracing it with the help of the text or on
your own. It will not only help you become a master of solving concurrency challenges but also a
master of programming in Java in general.

3. For the many examples presented in the text, don’t just read them. Instead, import them on to your
system and get your hands dirty with them by even modifying them and running them yourself.

You can find colored images (when color is important) at this book’s companion website at
http://www.perfmath.com/jcp/colored_images.pdf. The book also contains exercises at the end of each
chapter to help you check and solidify what you have learnt after completing a chapter.

TYPOGRAPHIC CONVENTIONS

Times New Roman indicates normal text blocks.

Italic indicates emphasis, definitions, email addresses, and URLs in general.

Courier New fontindicates code listings, scripts, and all other types of programming segments.

Courier indicates programming elements outside a program or script as well as
everything related to executing a program or script such as commands, file names,
directoy paths, entries on an HIML form, etc.

How To REACH THE AUTHOR

All errors in the text are the author’s responsibility. You are welcome to email the typos, errors and bugs
you found as well as any questions and comments you may have to me at henry_h_liu@perfmath.com.
Your valuable feedback will be greatly appreciated.

THE BOoOK’s WEB SITE

For downloads and updates, please visit the book’s website at http://www.perfmath.com.

Henry H. Liu, PH.D.
Palo Alto, California

Summer, 2015

http://www.perfmath.com/jcp/colored_images.pdf
http://www.perfmath.com/

Acknowledgements

First, 1 would really like to thank the self-publishing vendors | have chosen for making this book
available to you. This is the most cost-effective and efficient approach for both you as my audience and
myself as author. Computer and software technologies evolve so fast that a more timely publishing
approach is beneficial for all of us. In addition, my gratitude extends to my wife Sarah and our son
William, as | could have not been able to complete this book without their support and patience.

I would also like to thank my audience for valuable feedback and comments, which | have taken whole-
heartedly and included every time this book was updated. | am particularly grateful to those master-level
programmers who implemented various classes that make Java concurrent programming not only very
useful but also enjoyable. The text heavily depends on their well-documented implementations of
various classes to explain as accurately as possible how those frameworks work. | do not feel | have the
privilege to mention their names here, but we all know whom they are.

1 Multithreaded Programming in
Java

As we all know, software programs execute in processes and threads. The difference between a process
and a thread is that a process has its own self-contained execution environment, including a private
memory area, while a thread is often called a lightweight process as it shares the containing process’s
resources, such as memory and open files. A thread resides within its parent thread or process.

Threads are as important as processes, as they allow more than one task to be executed concurrently
within a process, which enhances a system’s overall throughput — regardless of whether the system has
one processor or multi-processors or multi-cores. Even if a system has only one processor, most OS
supports a feature called time slicing, which allows various processes and threads take turn to execute,
giving a user an illusion that multiple tasks were being executed concurrently.

Prior to our journey to exploring multithreaded programming in Java, I’d like to scope out the
perspectives of concurrent programming upfront. This will help us understand where our battlefields will
be and how we know we are successful with our concurrent programming efforts.

1.1 PERSPECTIVES OF CONCURRENT PROGRAMMING
Perhaps we should ask why we need to exploit concurrent programming in the first place after all. The
answer is that it’s all performance-driven. Let’s start with a performance law next.

Assume that we have a task that takes two stages to complete sequentially, as shown in Figure 1.1. What
is the total system throughput, given throughput X; for stage 1 and throughput X, for stage 2?

System (XD)

— | stagel > stage 2 S
(X1) (X2)

Figure 1.1 A job consisting of two consecutive stages

2 JAVA CONCURRENT PROGRAMMING: A QUANTITATIVE APPROACH

It turns out that the total system throughput, X,, can be expressed as follows [Java Performance and
Scalability: A Quantitative Approach, Henry H. Liu, CreateSpace, 2013]:

B X x X,

1.1
X, +X, 1)

0

where X, = N/AT, (stage 1) is the stage 1 throughput and X, = N/AT, is the stage 2 throughput. Here, N is
the total number of transactions to be processed by the two stages sequentially, while AT,and AT, are the
durations taken at stages 1 and 2, respectively. Equation (1.1) sets the performance law for sequential
programs. It can be extended to the case of n sequential stages as follows:

However, it’s sufficient to limit n to n = 2 to make our point clear here: This formula reveals the key to
understanding the performance bottleneck of a system. Suppose stage 2 is the bottleneck, namely, stage
2’s throughput is much lower than that of stage 1, or:

X, << X, (1.3)
Equation (1.1) can now be approximated as:
Xz X, (1.4)

The above formula states that in order to improve the total system throughput, optimization efforts have
to focus on stage 2. In addition to many potential optimization and tuning opportunities, let’s see how we
can improve the performance of stage 2 using concurrency, which is the main theme of this text.

Let’s further simplify the matter by assuming that:

1. Stage 1 is sequential and cannot be made to run concurrently or in parallel.
2. Let’s assume that the total wall-clock, elapsed time is AT = AT, + AT,, X; and X, can be re-
formatted as

_ N/AT _ X
17 Ar1/AaT T s (1.53)
_ N/AT 1/AT _ X
2 T AT2/AT T T (AT-AT1)/AT ~ 1-s (1.5b)

Here, we assume that the total portion of the sequential stage is s = AT; /AT, the portion of the time spent
in stage 1; thus the portion of stage 2 that can run concurrently is 1 — s, which would be (1 — s)/m if
executed by m threads concurrently. Substituting X; and X, expressed in Equations (1.5a) and (1.5b) into
Equation (1.1) gives:

CHAPTER 1: MULTITHREADED PROGRAMMING IN JAVA 3

1
P=—"7= (1.6)

s+—
m

Equation (1.6) is called Amdahl’s law, which represents the speedup (p) if the portion that can run
concurrently is run concurrently by m threads. Let’s use the following two extreme examples to illustrate
the implications of Equation (1.6), assuming m = 10:

1. s=0.1(10%). This case means that 90% of the process can be run concurrently. With m = 10, p
~ 5.3, which implies that by running the portion that can be run concurrently with 10 threads, the
maximum speedup would be 5.3 times, not 10 times.

2. s=0.9 (90%). This case means that 10% of the process can be run concurrently. With m = 10, p
~ 1.1, which implies that by running the portion that can be run concurrently with 10 threads, the
maximum speedup would be 10% only.

The above examples confirm an important principle that whether sequential or concurrent, the evaluation
of software system performance must be quantitative. We do not need to follow all principles of
metrologies, but a basic rule is that all performance optimization initiatives and efforts must be based on
well-designed and executed measurements. For example, it’s meaningless is to make 10% of the process
run concurrently and achieve 10% gain only while ignoring the 90% of it, as shown by the second case
described above.

However, it’s important to recognize and acknowledge that pursuing the performance of concurrent
programs is different from pursuing the performance of sequential programs. For concurrent programs,
we are mainly concerned with two things:

1. Thread-safety. This concern means that the three properties of mutual exclusion, deadlock-free,
and starvation-free are all preserved, or “nothing bad ever happens,” as vaguely stated in some
texts. However, it’s not so easy to guarantee thread-safety as threads do not follow repeatable
sequences of executions unless coordinated properly. Whenever threads need to be coordinated
properly to produce desired results, it’s a thread-safety concern.

2. Liveness failures. Liveness means that concurrent operations execute and produce deterministic
results as if they were sequential, or “something good eventually happens,” as vaguely stated in
some texts. Therefore, a liveness failure is a reflection that expected outcome did not occur. As
you will see, liveness failures may occur in a variety of forms, such as livelock, starvation,
deadlock, and so on.

Next, we give a historical overview of concurrent algorithms for two purposes:

= To help re-enforce the thread-safety and liveness concerns as stated above.

= To help reflect on some brilliant ideas about composing concurrent algorithms during the earlier days
of computers when no hardware-level and/or OS-level synchronization primitives were available to
help ease concurrent programming. | hope that after this overview, you would appreciate more how
fortunate we are with massive support of Java concurrent constructs that will be detailed throughout
the remainder of this text.

We will cover three most representative concurrent algorithms, developed by Dekker, Peterson and
Lamport, respectively. Instead of dragging you into the drudgery of rigorous, formal proofs, we will
focus more on the ideas and concepts behind those algorithms.

4 JAVA CONCURRENT PROGRAMMING: A QUANTITATIVE APPROACH

1.2 A HiIsTORICAL OVERVIEW OF CONCURRENT ALGORITHMS

It’s significantly harder to write concurrent programs than to write sequential programs, as there is only
one pre-determined execution path with a sequential program, while there could be many execution paths
with execution steps from multiple processes or threads intermingled un-deterministically, which may
result in un-predictable and/or un-desirable results. Dijkstra recognized the difficulty with concurrent
programming in 1960’s and contributed significantly in helping shape the field and provide some
solutions, especially through the concept of semaphores, as will be covered later in this text.

Essentially, a concurrent algorithm is deemed correct if it can be proved that it preserves the following
three properties:

1. Mutual exclusion: The two processes may not be in their respective critical sections
simultaneously.

2. Deadlock-free: The two processes may never block each other without letting the other party
ever enter its critical section.

3. Starvation-free: Any one process may never take exclusive control over execution and not give
chances for the other party to enter its critical section.

The first concurrent algorithm was offered by Dekker, which is correct, but kind of ad-hoc. About 14
years later, Peterson solved the same problem in a simplest, more elegant way, which “puts an end to the
myth of concurrent programming control ...,” in his own words in his two-page seminal paper with well-
deserved provocativeness. Finally, in 1970’s, Lamport published his famous Bakery algorithm, which
laid the foundation for today’s fault-tolerance implementations in clustered computing. Retrospectively,
those episodes are very inspiring and enjoyable.

Next, let’s start with Dekker’s algorithm, which is often used as a prelude to Peterson’s algorithm, which
is one of the center themes of this section. We conclude this section with Lamport’s Bakery algorithm,
which is an important milestone not only for concurrent programming but also for high-availability or
fault-tolerance systems we build today.

1.2.1 Dekker’s Algorithm

Dekker’s algorithm was documented in Dijkstra’s 1968 lecture notes, titled Co-operating sequential
processes (https://www.cs.utexas.edu/users/EWD/transcriptions/EWDO01xx/EWD123.html). The original
algorithm was described using convoluted if-then and goto statements, which are not intuitive and hard
to reason about. However, it does satisfy the three properties of a correct concurrent algorithm as stated
previously.

Dekker’s algorithm, as shown in Listing 1.1, can be understood as follows:

= Line 1: Repeat while true;

= Line 2: | intend to enter my critical section;
= Line 3: | wait while she intends to enter;

= Line 4: If it’s her turn;

= Line 5: I back off;

https://www.cs.utexas.edu/users/EWD/transcriptions/EWD01xx/EWD123.html

CHAPTER 1: MULTITHREADED PROGRAMMING IN JAVA 5

= Line 6: I spin wait while it’s her turn;

= Line 7: She is done so | intend to enter;

= Line 8: Exit the turn-loop;

= Line 9: Exit the intend-loop;

. [* Critical Section */

= Line 10: Give turn to her;

= Line 11: I do not intend to enter my CS for now.

The two while-loops, expressed at lines 3 and 6, respectively, set up a polite manner to wait as long as
the other party intends to enter the CS (line 3) and the turn favors the other party (line 6), which help
guarantee mutual exclusion and deadlock-free. Lines 10 — 11 guarantee the property of deadlock-free by
setting the turn to the other party and signaling that he/she has just exited his/her critical section.

It’s clear that Dekker’s algorithm looks a bit ad-hoc. About 13 years later, Peterson solved the same
problem in a much simpler and elegant manner, as is discussed in the next section.

Listing 1.1 Dekker’s algorithm

/* (cl, ¢c2 =0 or 1; turn = 1 or 2) */

/* process Pl */ /* process P2 */

1 while (true) { 1 while (true) {

2 cl = 1; 2 cz2 = 1;

3 while (c2 == 1) { 3 while (cl == 1) {

4 if (turn == 2) { 4 if (turn == 1) {

5 cl = 0; 5 c2 = 0;

6 while (turn == 2) {} 6 while (turn == 1) {}
7 cl = 1; 7 cz2 = 1;

8 } 8 }

9 } 9 }

/* the Critical Section */
10 turn = 1;
11 c2 = 0;

/* Non-Critical Section */
12 1}

/* the Critical Section */
10 turn = 2;
11 cl = 0;

/* Non-Critical Section */
12 1}

1.2.2 Peterson’s Algorithm

14 years later in 1981, Peterson came up with a concurrent algorithm that is much simpler and more
elegant than Dekker’s algorithm. If you are really interested in studying concurrent algorithms, | strongly
suggest that you read his original paper, titled Myths About The Mutual Exclusion Problem, published in
Information Processing Letters, Vol. 12, No. 3, pp 115 — 116 (only two pages), 1981.

6 JAVA CONCURRENT PROGRAMMING: A QUANTITATIVE APPROACH

Listing 1.2 shows Peterson’s algorithm, which I have tried to make as close to its original presentation as
possible. It can be understood as follows:

= Line 1: Expresses the intention to enter;

= Line 2: Sets the turn favorable to me;

= Line 3: Sets up a busy wait to wait until neither she wants to enter nor it is her turn, or in other words,
wait while she wants to enter and it is her turn. Note the logical operator precedence of NOT (3), ==
(9), and OR (14), where the numbers in brackets are the precedence in C++ assigned to each of those
logical operators. The line under line 3 is the equivalent busy-wait loop that is closer to what we
would have in real programming languages.

= Line 4: Signals the current state of having just exited the critical section.

A significant difference between Dekker’s algorithm and Peterson’s algorithm is that the former has two
loops while the latter has only one as shown at line 3 in Listing 1.3. Instead of giving you my version of
understanding of how his algorithm guarantees the mutual exclusion, deadlock-free and starvation-free
properties, I’d like to quote one of his paragraphs as follows:

“Since the more complex algorithms naturally require more complex proofs, one wonders whether the
prevalent attitude on ‘formal’ correctness arguments is based on poorly structured algorithms. Perhaps
good parallel algorithms are not really that hard to understand. In any case, this solution puts an end to
the myth that the two process mutual exclusion problem requires complex solutions with complex proofs.
(Dijkstra has recently devised a more formal proof of mutual exclusion for this algorithm [7] which, to
this author, seems unnaturally complex for such a simple algorithm.)”

Next, we discuss the Bakery algorithm devised by Lamport.

Listing 1.2 Peterson’s algorithm

/* (Ql, Q2 = true or false; TURN = 1 or 2) */

/* trying protocol for P2 */

1 Q2 = true;

2 TURN = 2;

3 wait until not Q1 or TURN == 1;
// while (Ql && TURN != 1) {}
/* critical section */
/* exit protocol for P2 */

4 Q2 = false;

/* trying protocol for Pl */

1 Q1 = true;

2 TURN = 1;

3 wait until not Q2 or TURN == 2;
// while (Q2 && TURN != 2) {}
/* critical section */
/* exit protocol for Pl */

\
\
\
\
\
\
\
4 Q01 = false;

1.2.3 The Bakery Algorithm

Prior to the Bakery algorithm by Lamport, Knuth [Additional comments on a problem in concurrent
programming control. Comm. Acm 9, 5 (May 1966), 321-322], deBruijn [Additional comments on a
problem in concurrent programming control. Comm. Acm 10, 3 (Mar. 1967), 137-138], Eisenberg and

CHAPTER 1: MULTITHREADED PROGRAMMING IN JAVA 7

McGuire [Further comments on Dijkstra’s concurrent programming control problem. Comm. Acm 15,
11 (Nov. 1972), 999] published their solutions to the concurrent programming problem laid out initially
and solved by Dijkstra [Solution of a problem in concurrent programming control. Comm. Acm 8, 9
(Sept. 1965), 569] and later solved by Dijkstra using semaphores [The structure of THE
multiprogramming system. Comm. Acm 11, 5 (May 1968), 341-346]. All these solutions, including the
semaphore-based solution, assume that all computers share a same memory location. If this shared
memory fails, the entire system halts.

Lamport’s Bakery algorithm assumes N processors, each containing its own memory unit. A processor
may read from any other processor’s memory, but it need only write into its memory, which is a typical
“shared read, exclusive write” pattern. In the case that if a read and a write operation to a single memory
location occur simultaneously, only the write operation must be performed correctly, while the read
operation may return any arbitrary value, which is remarkable.

The essence of the Bakery algorithm is that a processor is allowed to fail at any time without bringing
down the entire system. It is assumed that when a processor fails, it immediately goes to its noncritical
section and halts. The failed processor’s memory may return arbitrary values but eventually will return a
value of zero.

Unlike the previous algorithms, the Bakery algorithm also guarantees the fairness of first-come-first-
served. When a processor wants to enter its critical section, it first executes a loop-free block of code,
that is, a fixed number of steps. It is then guaranteed to enter its critical section prior to any other
processor that later comes for service.

The algorithm mimics how a bakery works. A customer receives a number when entering the shop. The
holder of the lowest number is the next one to be served. The processors are named 1, ..., N, each of
which chooses its own number. If two processors choose the same number, then the one with the lowest
ID (or name) goes first.

Listing 1.3(a) shows the Bakery algorithm in its original form as published by Lamport. It starts with two
integer arrays, choosing[1:N] and number[1:N]. The elements of choosing[i] and nurber[i] are in
processor i’s memory, and are initially zero. The range of number [1] is unbounded. The expression

(numberlj], j) < (numbet[i], i) Means number[j] < numberli], or j <i if number[j] = numberfi].

The processor i is allowed to fail at any time, and then restarted in its non-critical section with
choosing[i] = number[i] = 0. However, if a processor keeps failing and restarting, it may deadlock
the system.

Listing 1.3(a) The Bakery Algorithm (original form)

integer array choosing[1l:N], number[1l:N];
begin integer j;
Ll: choosing[i] := 1;
number[i] := 1 + maximum(number([1l],...,number[N]);
choosing[i] = 0;
for j = 1 step 1 until N do
begin
L2: if choosing[j] !=0 then goto L2;

QO ~J o Ul WDN

8 JAVA CONCURRENT PROGRAMMING: A QUANTITATIVE APPROACH

9 L3: if number[j] !'= 0 and (number[j], Jj) < (number([i], i)
then goto L3;

10 end;

11 critical section

12 number[i] = 0;

13 noncritical section;

14 goto L1;

15 end

Listing 1.3(b) shows the same Bakery algorithm in a revised form to make it easier to understand. There
are two important states for processor i:

= In the door way when choosing[i] issetto 1 at line 4
= In the bakery from when choosing[i] is set to O at line 6 until it either fails or leaves the critical
section prior to line 11.

Listing 1.3(c) shows a Java implementation of the Bakery algorithm, adapted from an article available
online at https://en.wikipedia.org/wiki/Lamport%27s_bakery algorithm. Note that Java initializes all
elements of an int array to zero and all members of a Boolean array to false by default. Lines 7—30 and
32—34 show the 1ock and unlock methods for thread i, respectively.

The key to understanding the Bakery algorithm lies with the two while-loops displayed at lines 8 and 9,
respectively. Line 8 means that processor i should wait while processor j is still in the door way choosing
its number, while line 9 means that while in the bakery, processor i should continue waiting while there
exist processes with lower numbers or lower ID’s if numbers are equal.

It’s interesting to note the arrangement that each thread only writes its own storage, and only reads are
shared. Since the algorithm is not built on top of some lower level atomic operations, such as compare-
and-swap (CAS), as we will discuss later, it can be used to implement mutual exclusion on memory that
lacks synchronization primitives provided at the hardware or OS level, e.g., a storage shared among a
cluster of computers. Thus, Lamport’s Bakery algorithm is not only interesting academically but also
practically.

You can refer to Lamport’s original paper for the proofs of all three properties of mutual exclusion,
deadlock-free and starvation-free. Next, we discuss the evolution of Java concurrency support.

Listing 1.3(b) The Bakery Algorithm (revised form)

1 integer array choosing[1:N], number[1:N];
2 integer j;
3 while (true) {

/* doorway */

4 choosing[i] = 1;
5 number[i] = 1 + maximum(number([1l],...,number[N]);
/* bakery */
6 choosing[i] = 0;
7 for (int j = 1; j < N; J++) {
8 while (choosing[j] !'= 0) {};
9 while (number[j] !'= 0 && (number[j], J) < (number[i], 1)) {}
10 i

https://en.wikipedia.org/wiki/Lamport%27s_bakery_algorithm

CHAPTER 1: MULTITHREADED PROGRAMMING IN JAVA 9

/* critical section */
11 number[i] = 0;

/* noncritical section */
12 1}

Listing 1.3(c) Bakery.java

1 public class Bakery {

2 int threads = 10;

3

4 int[] number = new int[threads];

5 boolean[] choosing = new boolean[threads];

6

7 public void lock(int 1)

8 {

9 choosing[i] = true;

10 int max = 0;

11 for (int n : number) {

12 if (n > max) {

13 max = n;

14 }

15 } // find max in the array

16 number[i] = 1 + max;

17 choosing[i] = false;

18 for (int j = 0; j < number.length; ++7) {

19 if (3 !'= i) {

20 while (choosing[j]) {

21 Thread.yield() ;

22 }

23 while (number([j] !'= 0

24 && (number[j] < number[i] ||
(number[i] == number[]j] && j < i))) {

25 Thread.yield() ;

26 }

27 }

28 }

29 /* critical section */

30 }

31

32 public void unlock(int 1) {

33 number[1i] = 0;

34 }

35 }

1.3 EvoLuUTION OF JAVA CONCURRENCY SUPPORT

As one of the most popular, modern programming languages, the Java platform began with providing
basic concurrency support in the Java programming language itself and its class libraries since its earliest
version of JDK 1.0, mostly through the synchronized keyword and the volatile keyword, as will be
discussed later. Java 5 enhanced the concurrency support by providing high-level concurrency API in the

10 JAvA CONCURRENT PROGRAMMING: A QUANTITATIVE APPROACH

java.util.concurrent package, making Java concurrent programming more flexible with the
following new features:

= Lock objects for finer-granularity mutual exclusion control

= Executor interface for much-needed thread pool management for large scale applications

= Concurrent collections for managing large collections of data with reduced need for synchronization
= Atomic variables for minimizing the need for synchronization at the application level

Java 7 further introduced a new thread pool named Fork-Join pool, which was designed for computations
that can be broken into smaller pieces and processed recursively. The Fork-Join pool spreads split sub-
tasks among multiple CPU cores transparently, which greatly simplifies concurrent programming while
enhancing the performance and scalability of an application.

Finally, I’d like to mention that Java 8 added new extensions for more powerful parallel-processing
support with features such as CompletableFuture and streams, which will be covered in future
versions of this book.

1.4 JAVA THREADS

A Java thread is a single unit of execution on its own for executing a designated computing task. A Java
thread can be defined by implementing an interface hamed Runnable or by extending a class named
Thread, which implements Runnable. However, the challenging is not with how to create a Java thread,
but with how to coordinate threads so that they don’t stampede on each other and end up with un-
deterministic results.

Next, let’s review some of the issues that might arise with Java concurrent programming.
1.4.1 Potential Issues with Java Concurrency

The following issues may arise associated with Java multithreaded programming:

= Thread Interference. Each thread has its own prescribed set of operations to carry out. Interference
occurs when operations that run in different threads but act on the same data interleave. Depending
on how the sequences of steps overlap, the results may be un-deterministic.

= Memory Inconsistency Errors. It’s imperative that all threads have consistent views of the state of a
shared resource or data structure or object in general. However, depending on how multiple threads
are coordinated, memory inconsistency errors may occur, causing undesirable data corruption issues.

= Context Switching Overhead. Whenever execution moves to a different thread, the context of the
current thread must be switched, causing context switching overhead that eventually limits the
scalability of a system. This is more of a scalability issue than a multi-threading correctness issue.

To some extent, memory inconsistency errors are a consequence of thread interference not coordinated
properly. Memory inconsistency errors can be avoided by establishing a happens-before relationship,
which guarantees that memory write by one thread is visible to a read by another thread if the write
operation happens-before the read operation. Various mechanisms, such as described below, exist in the
earlier versions of Java to help enforce happens-before relationships:

CHAPTER 1: MULTITHREADED PROGRAMMING IN JAVA 11

= Synchronization: Synchronization uses an internal entity known as the intrinsic lock or monitor lock
or simply monitor to help both enforce exclusive access to an object's state and establish happens-
before relationships that are essential to guarantee the visibility of the modified state from one thread
to all others. In Java, every object has a built-in monitor associated with it. By convention, a thread
that needs exclusive and consistent access to an object's fields has to acquire the object's intrinsic
lock before accessing them, and then release the intrinsic lock when it's done with them. A thread is
said to own the intrinsic lock between the time when it has acquired the lock and the time before it
releases the lock. As long as a thread owns an intrinsic lock, no other thread can acquire the same
lock. The other thread will block when it attempts to acquire the lock. When a thread releases an
intrinsic lock, a happens-before relationship is established between that action and any subsequent
acquisition of the same lock.
The volatile keyword: The Java programming language has the volatile keyword, which can be
applied to a field to guarantee that there is a global ordering on the reads and writes to a volatile
variable. There are two implications associated with a volatile variable: (1) the compiler should not
apply optimizations to a volatile variable, and (2) a thread should fetch a volatile variable’s value
from memory instead of from cache for every access. In Java 5 or later, volatile reads and writes
establish a happens-before relationship, much like acquiring and releasing a mutex. However, it may
not work as intended in some situations; therefore, exercise caution when you use a volatile variable
with your application.
Thread.start(): Causes the thread to begin execution; the Java Virtual Machine calls the run
method of the thread.
» Thread.sleep (long millis) : Causes the currently executing thread to sleep (temporarily cease
execution) for the specified number of milliseconds.
* Thread. join(): The calling thread waits until the called thread terminates.

We will dive into the above mechanisms in detail throughout the remainder of this text. For the time
being, you can get a glimpse of why the above issues arise by understanding the various states that a Java
thread might be in at any given point of time, which is the subject of the next section.

1.4.2 All Possible States for a Java Thread

Figure 1.2 shows the various states that a thread might be in at any given point of time, such as:

= NEW: Created but not started to run yet.

= RUNNABLE: Currently executing or waiting in the run queue for its turn to execute when it gains
access to the CPU. The thread is either ready to be scheduled to run or running.

* BLOCKED: Suspended for waiting to acquire a monitor lock.

= WAITING: Suspended indefinitely caused when the non-timeout versions of Object.wait() or
Thread.join () or LockSupport.park() (to be covered later) are called. Will be woken up when
another thread calls notify ()/notifyAll ().

 TIMED_WAITING: Suspended for a specified period, for example, caused when the following
methods are called:

° sleep (sleepTime)
° wait (timeout)
° join (timeout)

12 JAvA CONCURRENT PROGRAMMING: A QUANTITATIVE APPROACH

° LockSupport .parkNanos ()
° LockSupport .parkUntil ()

= TERMINATED: Reached the end of its life and exited.

It’s important to remember that a thread can be in only one state at a given point in time. In addition,
those states are Java virtual machine states rather than any operating system thread states.

Next, we describe common situations, such as livelock, starvation and deadlock, to avoid when
designing and coding concurrent programs.

EINote: BLOCKED versus WAITING. It might be obvious what the states of NEW, RUNNABLE and
TERMINATED mean. However, there is a subtle difference between BLOCKED and WAITING:
BLOCKED means waiting synchronously to acquire a lock, while WAITING means that the thread has
gone into asleep and will wake up when notified asynchronously or timeout expires.

NEW
RUNNABLE WAITING
Waiting for lock Ready Waiting
Waiting over
BLOCKED E
Waiting
Running
Lock acquired
TIMED_WAITING
Waiting over
TERMINATED

Figure 1.2 Possible states of a thread

1.4.3 Livelock, Starvation and Deadlock

CHAPTER 1: MULTITHREADED PROGRAMMING IN JAVA 13

Livelock, starvation and deadlock are important concepts to be aware of for current programming. They
differ in that:

= Livelock: Both threads are attempting to access the same resource at the same time to get their work
done but unable to make progress. The situation is similar to two persons facing each other and
moving to the same direction to yield to the other party.

= Starvation: Describes a situation where one thread grabs and uses the resource solely, making one or
more threads have no chance to gain regular access to the shared resource and be unable to make
progress. In this case, only one thread — the greedy thread — can make progress. One should avoid
starvation as much as possible.

= Deadlock: Describes a situation where two or more threads are blocked forever, waiting for each
other to release the resource.

We will show examples of livelock, starvation and deadlock later in this chapter. Next, we describe how
to create a Java thread.

1.5 CREATING A THREAD

In Java, you can create a thread by one of the following two ways:

= implementing the Runnable interface
= extending the Thread class

The Runnable interface is incredibly simple. It is as simple as shown in Listing 1.4, with only one
public method named run, which has no arguments and does not return a result.

Listing 1.4 Runnable.java

36 package java.lang;

37 public interface Runnable {
38 public void run();

39 }

As is seen, if you need to create a class with potentially many instances for executing certain tasks, all
you need to do is to create a class that implements the Runnable interface, with the intended tasks coded
in the run () method. This interface is meant to be a common construct for objects to execute code while
they are active until they are stopped. Runnable is lightweight and is particularly suitable for defining
computational tasks, as will be demonstrated throughout this text.

Listing 1.5 shows the Thread class definition, extracted from its actual implementation as of JDK 1.7u75
— the last update of JDK 7 as of this writing. The entire implementation is 2058 lines long, including
comments, which is too lengthy to be fully listed here. Even with this partial listing, we can see:

= Lines 3 — 17: What classes the Thread class depends on, such as Reference, ReferenceQueus,
AccessController, Map, HashMap, ConcurrentHashMap, LockSupport, Interruptible, and so on.

= Line 19: The Thread class implements the Runnable interface.

= Lines 21 — 23: Fields such as name, priority, and threadQ, and so on.

14 JAvA CONCURRENT PROGRAMMING: A QUANTITATIVE APPROACH

= Lines 26 — 30: Fields such as threadlocals, stackSize, tid for Thread ID, threadStatus, and so
on.

= Lines 32 — 34: How the synchronized keyword is used to guard incrementing the threadSeqiumber
field.

= Line 36: How the volatile keyword is used to guard the blocker variable of type Interruptible.

= Lines 37 — 43; How the synchronized and volatile keywords are used together to synchronize the
blockerOn method.

= Lines 47 — 61: The sleep(...) method and init (...) method

= Lines 64 — 69: Some private helper methods related to operations such as setPriority, stop,
suspend, resume, interrupt, and setNativeName

Note that the purpose here is not to help you get some immediate and deep understanding of how the
Java Thread class is actually coded. Instead, even with this partial list, you could get a glimpse of many
of the multithreading concepts wired into the Java Thread class implementation.

Listing 1.5 Thread.java (partial)

package java.lang;

1
2
3 import java.lang.ref.Reference;

4 import java.lang.ref.ReferenceQueue;

5 import java.lang.ref.WeakReference;

6 import java.security.AccessController;

7 import java.security.AccessControlContext;

8 import java.security.PrivilegedAction;

9 import java.util.Map;

10 import java.util.HashMap;

11 import java.util.concurrent.ConcurrentHashMap;
12 import java.util.concurrent.ConcurrentMap;

13 import java.util.concurrent.locks.LockSupport;
14 import sun.nio.ch.Interruptible;

15 import sun.reflect.CallerSensitive;

16 import sun.reflect.Reflection;

17 import sun.security.util.SecurityConstants;

18

19 public class Thread implements Runnable {

20

21 private char name[];

22 private int priority;

23 private Thread threadQ;

24 private long eetop;

25

26 ThreadLocal.ThreadLocalMap threadLocals = null;
27 ThreadLocal.ThreadLocalMap inheritableThreadLocals = null;
28 private long stackSize;

29 private long tid; // Thread ID

30 private volatile int threadStatus = 0;

31

32 private static synchronized long nextThreadID() {

CHAPTER 1: MULTITHREADED PROGRAMMING IN JAVA 15

33 return t++threadSeqNumber;

34 }

35

36 private volatile Interruptible blocker;

37 private final Object blockerLock = new Object();

38

39 void blockedOn (Interruptible b) {

40 synchronized (blockerLock) {

41 blocker = Db;

42 }

43 }

44

45 public static native Thread currentThread();

46

47 public static void sleep(long millis, int nanos)

48 throws InterruptedException { // ...}

49

50 private void init(ThreadGroup g, Runnable target, String name,
51 long stackSize, AccessControlContext acc) {
52 if (name == null) {

53 throw new NullPointerException ("name cannot be null");
54 }

55

56 this.name = name.toCharArray();

57

58 Thread parent = currentThread();

59 SecurityManager security = System.getSecurityManager();
60 //

61 }

62

63 /* Some private helper methods */

64 private native void setPriority0 (int newPriority);

65 private native void stopO (Object o) ;

66 private native wvoid suspendO () ;

o7 private native void resumeO () ;

68 private native void interruptO();

69 private native void setNativeName (String name) ;

70 // other methods are omitted

71}

A thread is an isolated execution unit in a program. Every thread has a priority. Threads with higher
priorities are executed in preference to threads with lower priorities. In addition, a thread may be marked
as a daemon. The Java Virtual Machine allows an application to have multiple threads to run
concurrently. When a Java Virtual Machine starts up, there is usually a single non-daemon thread. The
Java Virtual Machine continues to execute threads until either of the following occurs:

* The exit method of the class Runtime has been called and the security manager has permitted the
exit operation to take place.

= All non-daemon threads have exited, either by returning from the call to the run method or by
throwing an exception that propagates beyond the run method.

16 JAvA CONCURRENT PROGRAMMING: A QUANTITATIVE APPROACH

Before showing some actual examples of creating Java threads, I’d like to call your attention to the two
more methods of the Thread class, start () and run (), as shown in Listings 1.6 and 1.7. The start ()
method starts up a thread while the run () method initiates the thread to execute the tasks defined in the
run() method immediately. It’s interesting to see from line 1 of Listing 1.6 that the start () method of a
thread itself is synchronized.

Listing 1.6 The start method of the Thread class

1 public synchronized void start() {

2 if (threadStatus != 0)

3 throw new IllegalThreadStateException();

4

5 /* Notify the group that this thread is about to be started
6 * so that it can be added to the group's list of threads
7 * and the group's unstarted count can be decremented. */
8 group.add (this) ;

9

10 boolean started = false;

11 try {

12 start0();

13 started = true;

14 } finally {

15 try |

16 if (!started) {

17 group.threadStartFailed (this);

18 }

19 } catch (Throwable ignore) {

20 /* do nothing */

21 }

22 }

23 }

24

25 private native void startO();

Listing 1.7 The run method of the Thread class

26 public void run() {

27 if (target != null) {
28 target.run();

29 }

30 }

Regarding the run() method of the Thread class as shown in Listing 1.7, if the thread was constructed
using a separate Runnable run object, then that Runnable object’s run method is called; otherwise, the
run method does nothing and returns. Refer to Figure 1.3, taken from the JDK7u75 source project
imported onto my Eclipse IDE, for other fields and methods for the Thread class. Note the symbol next
to each entry, such as S for static, E for enum, | for interface, V for volatile, C for constructor, F
for final, and N for native. You can learn a lot just by going through all entries by their names, which
are indicative of what they are meant for. For example, look under the enum State for BLOCKED, NEW,

CHAPTER 1: MULTITHREADED PROGRAMMING IN JAVA 17

RUNNABLE, TERMNINATED, TIMED WAITING and WAITING, which correspond to the Java thread states

shown in Figure 1.2.

4) Thread java
4 B Thread
4 @ Caches
¥ subclassAudits
¥ subclassAuditsQueue
4 @ State
¥ BLOCKED
¥ NEW
¥ RUMMABLE
¥ TERMINATED
¥ TIMED_WAITING
¥ OWAITING
¢+ @ UncaughtExceptionHandler
» G WeakClassKey
% defaultUncaughtExceptionHandler
i EMPTY_STACK_TRACE
¥ MAX_PRIORITY
¥ MIN_PRICRITY
¥ NORM_PRIORITY

¥ holdsLock(Object) : boolean

& interrupted() : boolean

£ isCCLOverridden{Class) : boolean

& nextThreadID() : long

B nextThreadMum() « int

& processQueue(ReferenceQueue<Class<?>>, Ct
¥ registerNatives() : void

& setDefaultUncaughtExceptionHandler{Uncaugl
¥ sleep(long) : void

& sleep{long, int) : void

% yield(: void

g blocker

& blockerLock

o contextClassLoader

o daemon

o eetop

o group
4 inheritableThreadLocals
o inherited AccessControlContext

i SUBCLASS IMPLEMENTATION PERMISSION g name
& threadlnitNumber o nativeParkEventPointer
o threadSegMNumber &' parkBlocker
e 1. o priority
& activeCount() : int o single_step
b g auditSubclass(Class) : hoolean o stackSize
Y currentThread() : Thread o stillborn
& dumpStack() : void o target
¥ durmnpThreads(Thread[]) : StackTraceFlement[| | # threadlocals
& enumerate(Thread(]) : int o thread(Q
g gethllStackTraces() : Map<Thread, StackTracs o' threadStatus
& getDefaultUncaughtExceptionHandler() : Unc|| @ tid
I getThreads() : Thread]] o’ uncaughtExceptionHandler
(a) (b)

18 JAvA CONCURRENT PROGRAMMING: A QUANTITATIVE APPROACH

& Thread() e interrupt0() : void

& Thread(Runnable) W isalive(: boolean

& Thread(Runnable, AccessControlContext) & isDaemon(: boolean

& Thread(Runnable, String) @ isInterrupted() : boolean

& Thread(String) el isinterrupted(booclean) : boolean
& Thread(ThreadGroup, Runnable) & jain{) : void

& Thread(ThreadGroup, Runnable, 5tring) b join{long) : void

& Thread(ThreadGroup, Runnable, String, long) ek join{long, int) : void

& Thread(ThreadGroup, String) & resume(: void
g blockedOn{Interruptible) ; void & resume0() : void

& checkAccess() : void @ run{) : vaid

< clone() : Object o setContextClassLoader{ClassLoader) : void
&' countStackFrames() : int & setDaemon(boolean) : void

& destroy() : void d setName(String) : void

g dispatchUncaughtBException(Throwable) : void| | ' setNativeMame(String) : void

= exit() : void d setPriority(int) : void
g getContextClassLoader() : ClassLoader gl setPriorityQ{int) : void

@ getld() : long @ setUncaughtExceptionHandler(UncaughtExcep
& getName() : String g start() : void

& getPriority() : int @& start() ; void

g getStackTrace() : StackTraceElement]] g start0() : void

g getState() : State & stop() : void

& getThreadGroup() : ThreadGroup gk stop(Throwable) : void

@ getUncaughtExceptionHandler() : UncaughtEx | &' stop0{Object) : void

B init(ThreadGroup, Runnable, String, long) : vaic | & suspend() : void

g init(ThreadGroup, Runnable, String, long, Accey | ' suspend0() : void

g interrupt() ; void @ toString() : String

(©) (d)

Figure 1.3 Fields and methods for the Thread class

From Figure 1.3, you can also notice what constructors are available for creating a Thread object. Here
is a summary of all seven constructors:

1. Thread(): Allocates a new, anonymous Thread object.

2. Thread(Runnable target): Allocates a new, anonymous Thread object from a Runnable target.

3. Thread(Runnable target, String name): Allocates a new Thread object with a Runnable target
and with a given name.

CHAPTER 1: MULTITHREADED PROGRAMMING IN JAVA 19

4. Thread(ThreadGroup group, Runnable target): Allocates a new Thread object with a given
ThreadGroup and a given Runnable target.

5. Thread(ThreadGroup group, Runnable target, String name): Allocates a new Thread object
with a given ThreadGroup, a given Runnable target and a given name.

6. Thread(ThreadGroup group, Runnable target, String name, long stackSize): Allocates a
new Thread object with a given ThreadGroup, a given Runnable target, a given name, and a
specified stack size.

7. Thread(ThreadGroup group, String name): Allocates a new Thread object with a given
ThreadGroup and a given name.

Notice the arguments you can pass into a constructor, essentially as a combination of the parameters such
as a Runnable object, a name, and a ThreadGroup object, etc. This will become clear after we show the
creating thread examples next. The option 3 with a given Runnable target and a given name is the most
common one, though, as demonstrated in the next section.

Next, we show how to create threads by implementing the Runnable interface or by extending the
Thread class.

mINote: When to use Runnable or Thread. In most cases, the Runnable interface should be used if
you are only planning to override the run () method and no other Thread methods. This is important
because classes should not be subclassed unless the programmer intends to modify or enhance the
fundamental behavior of the class.

1.5.1 Implements Runnable

Listing 1.8(a) shows how a new thread can be defined by implementing the Runnable interface. It
follows the below procedure:

1. Line 2: Declares a thread variable t.

2. Lines 4 —9: Define a constructor, within which, a Thread object is instantiated using the Thread
class’s constructor of Thread (Runnable target, String name) as introduced in the
preceding section. Here the Runnable target is the instance itself as designated as “this” and
the name is “New Thread.” Then, at line 8, the start () method is called to start the thread.

3. Lines 12 -22: Define the run method, which contains a for-loop that loops three times to print a
message after sleeping for one second each time. The for-loop is wrapped in a try-catch block
to capture InterruptedException.

This example shows how one can create a simple Java thread by implementing the Runnable interface.
Next, we describe the driver class.

Listing 1.8(a) NewThread.java

1 class NewThread implements Runnable {
2 Thread t;
3

20 JAvA CONCURRENT PROGRAMMING: A QUANTITATIVE APPROACH

4 NewThread () {

5 // Create a new thread

6 t = new Thread(this, "New Thread");

7 System.out.println ("Child thread: " + t);

8 t.start(); // Start the thread in the constructor
9 }

10

11 // The run method for the new thread

12 public void run() {

13 try {

14 for (int 1 = 3; 1 > 0; i--) {

15 System.out.println ("Child Thread: " + 1i);
16 Thread.sleep (1000);

17 }

18 } catch (InterruptedException e) {

19 System.out.println ("Child interrupted.");
20 }

21 System.out.println ("Exiting child thread.");
22 }

23 }

Listing 1.8(b) is a regular Java class for testing the NewThread class as shown in Listing 1.8(a). At line 3,
it simply creates a NewThread object without calling its start method, which is already coded in the
constructor of the NewThread class as shown at line 8 in Listing 1.8(a). Then, lines 5 — 12 set up a for-
loop that loops five times, each of which prints a message and then sleeps for one second prior to the
next iteration.

When the MainThread object is executed, it starts up a NewThread object at line 3 and then moves on to
execute its own code — mostly the for-loop from line 6 to 9. Now, as we have set up two threads to take
turns to get access to CPUs and execute (which would do time-slicing as we described previously), we
should explore how they would go each time the MainThread class is run. Figure 1.4 shows the result:
The left screenshot and the right screenshot show the sequences of executions interleaved between the
main and the child thread out of two separate runs, respectively. As you see, the sequences are different
between the first and second runs: The first run had the sequence of 5, 3, 4, 2, 1, 3, ... while the second
run had the sequence of 5, 3, 4, 2, 3, 1, ..., with the sub-sequence of 1, 3 swapped between the main and
child threads during the second run. This simple example demonstrates exactly the problems that may
arise with multithreaded programming: One cannot assume that multiple threads would execute by
following a deterministic sequence; and therefore their operations must be coordinated properly to
achieve predictable results every time they are executed.

Next, we demonstrate how to create a thread by extending the Thread class.

Listing 1.8(b) MainThread.java

1 class MainThread {

2 public static void main(String args[]) {

3 new NewThread(); // create a new thread
4

5 try {

CHAPTER 1: MULTITHREADED PROGRAMMING IN JAVA 21

[for (int 1 = 5; 1 > 0; 1i--) {
7 System.out.println("Main Thread: " + 1i);
8 Thread.sleep (1000);

9 }

10 } catch (InterruptedException e) {

11 System.out.println("Main thread interrupted.");
12 }

13 System.out.println("Main thread exiting.");

14 }

15 1}

Child thread: Thread[New Thread,5,main] Child thread: Thread[New Thread,5,main]
Main Thread: 5 Main Thread: 5

Child Thread: 2 Child Thread: 3

Main Thread: 4 Main Thread: 4

Child Thread: 2 Child Thread: 2

Child Thread: 1|

Main Thread: 3
Exiting child thread.
Main Thread: 2

Main Thread: 1

Main thread exiting.

Main Thread: 3

Child Thread: 1
Exiting child thread.
Main Thread: 2

Main Thread: 1

Main thread exiting.

Figure 1.4 Main and child threads with un-deterministic sequence of executions
1.5.2 Extends Thread

Listing 1.9(a) shows how a new thread can be defined by extending the Thread class. It follows the
below procedure:

1. Lines 2 - 7: Since it extends the Thread class instead of implementing the Runnable interface, it
does not need to declare a thread variable t, as was the case with the preceding example shown
in Listing 1.8(a). Instead, it starts with defining a constructor straightforwardly, within which,
the super method is called with a thread name, and then the start () method is called to start
the thread.

2. Lines 10 — 20: Define the run method, which is identical to the preceding example that it
contains a for-loop that loops three times to print a message after sleeping for one second each
time. The for-loop is wrapped in a try-catch block to capture InterruptedException
associated with the sleep method.

This example shows how one can create a simple Java thread by extending the Thread class. Next, we
describe the driver class.

Listing 1.9(a) ExtendedThread.java

1 public class ExtendedThread extends Thread {

2 ExtendedThread () {

3 // Create a new thread

4 super ("ExtendedThread") ;

5 System.out.println("Child thread: " + this);

6 start(); // Start the thread in the constructor

22 JAvA CONCURRENT PROGRAMMING: A QUANTITATIVE APPROACH

7 }

8

9 // The run method for the new thread.

10 public void run() {

11 try {

12 for (int 1 = 3; 1 > 0; i--) {

13 System.out.println ("Child Thread: " + 1i);
14 Thread.sleep(1000);

15 }

16 } catch (InterruptedException e) {

17 System.out.println ("Child interrupted.");
18 }

19 System.out.println ("Exiting child thread.");
20 }

21 }

Listing 1.9(b) is a regular Java class, named MainThread?, for testing the ExtendedThread class as
shown in Listing 1.9(a). At line 3, it simply creates an ExtendedThread object without calling its start
method, which is already coded in the constructor of the ExtendedThread class as shown at line 6 in
Listing 1.9(a). Then, lines 5 — 12 set up a for-loop that loops five times, each of which prints a message
and then sleeps for one second prior to the next iteration.

When the MainThread? is executed, it starts up an ExtendedThread object at line 3 and then moves on
to execute its own code — mostly the for-loop from line 6 to 9. Similar to the preceding example, as we
have set up two threads to take turns to get access to CPUs and execute, we explore how they would go
each time when MainThread? is run. Figure 1.5 shows the result: This time, it took four runs in my
environment in order to see a different sequence of executions between the main and the child threads
from start to finish. Once again, this simple example demonstrates that one cannot assume that multiple
threads would execute by following a deterministic sequence, and therefore their operations must be
coordinated properly to achieve predictable results every time they are executed.

I hope you have been convinced that threads need to be coordinated properly for their operations to yield
predictable results no matter how many times when they are executed. The next section demonstrates
how that can be done by synchronizing the operations of multiple threads by using the synchronized
keyword made available since Java 1.

Listing 1.9(b) MainThread2.java

class MaindThread2 {
public static void main(String args[]) {
new ExtendedThread(); // create a new thread

try {
for (int i = 5; i > 0; i--) {
System.out.println ("Main Thread: " + 1i);
Thread.sleep(1000);
}
} catch (InterruptedException e) {
System.out.println("Main thread interrupted.");

= OO0 -Jo ol wN -

= O

CHAPTER 1: MULTITHREADED PROGRAMMING IN JAVA 23

12 }

13 System.out.println("Main thread exiting.");
14 }

15 1}

Child thread: Thread[ExtendedThread,5,main]
Main Thread: 5

Child Thread: 3

Main Thread: 4

Child Thread: 2

Main Thread: 3

Child Thread: 1
Exiting child thread.
Main Thread: 2

Main Thread: 1

Main thread exiting.

Child thread: Thread[ExtendedThread,5,main]
Main Thread: 5

Child Thread: 3

Main Thread: 4

Child Thread: 2

Main Thread: 3

Child Thread: 1

Exiting child thread.

Main Thread: 2

Main Thread: 1

Main thread exiting.

Child thread: Thread[ExtendedThread,5,main]
Main Thread: 5

Child Thread: 3

Main Thread: 4

Child Thread: 2

Main Thread: 3

Child Thread: 1

Main Thread: 2
Exiting child thread.
Main Thread: 1

Main thread exiting.

Child thread: Thread[ExtendedThread,5,main]
Main Thread: 5

Child Thread: 3

Main Thread: 4

Child Thread: 2

Main Thread: 3

Child Thread: 1
Exiting child thread.
Main Thread: 2

Main Thread: 1

Main thread exiting.

Figure 1.5 Sequences interleaved between the main and child threads out of four runs: one is different

from the other three

1.6 SYNCHRONIZATION

As you’ve seen from lines 32 — 43 from Listing 1.5, as copied over here as shown below, one can
synchronize a method (lines 32 — 34) or a block of code (lines 40 — 42) by applying the synchronized
keyword. In both cases, there is an implicit lock associated with every Java object; and when a method or
a block is synchronized, that implicit monitor lock will work behind the scene. In this section, we use
two examples to demonstrate these two different synchronization approaches.

32 private static synchronized long nextThreadID() {
33 return ++threadSegNumber;

34 }

35

36 private volatile Interruptible blocker;

37 private final Object blockerLock = new Object();
38

39 void blockedOn (Interruptible b) {

40 synchronized (blockerLock) {

41 blocker = b;

42 }

43 }

1.6.1 Synchronized Methods

24 JAvA CONCURRENT PROGRAMMING: A QUANTITATIVE APPROACH

This section provides an example to demonstrate how multiple Java threads that share a resource can be
coordinated by using the synchronized keyword available since Java 1. The example consists of three
classes as shown in Listings 1.10(a), (b) and (c), respectively. The function of each class is described as
follows:

= Messager.java [Listing 1.10(a)]. This is a regular Java class, meaning that it does not implement the
Runnable interface or extend the Thread class. It simply outputs a given message flanked by a left
arrow bracket and a right arrow bracket. The sendMessage (String msg) method has a
Thread.sleep (1000) statement, which puts the thread into sleep for one second each time when
it’s called. Keep in mind that each thread will have its own copy of the Messager object instance, so
some chaotic behavior might occur to those Messager object instances if they were not synchronized.
MessageThread.java [Listing 1.10(b)]. This is a Java thread class that implements the Runnable
interface. As expected, it implements the run () method, within which the target Messager object’s
sendMessage method is called with a given message.

SynchTest0.java [Listing 1.10(c)]. This is the driver class that tests the above two classes. It creates
a Messager object instance, which will be passed to three threads of type MessageThread, with a
message passed in together for each thread to send.

As shown in Listing 1.10(c), the three threads are supposed to send the messages of “Java”,
“Concurrent” and “Programming”, respectively, with each message to be flanked by “<” and “>”,
respectively, as well. However, without synchronizing the Messager object, as indicated by line 2
commented out in Listing 1.10(a), the output of running the SynchTestO class as shown in Listing
1.10(c) would look like the following:

<Java<Concurrent<Programming>
>
>

Now, after un-commenting line 2 and commenting out line 3 in Messager.java shown in Listing
1.10(a), the output of running the same SynchTest0.java class would look like the following:

<Java>
<Programming>
<Concurrent>

or

<Concurrent>
<Java>
<Programming>

Namely, each message is flanked properly, although the sequence of the messages may differ, which is
acceptable as long as the integrity of each thread is preserved.

Next, we demonstrate how to use synchronized blocks or statements to achieve the same purpose.
Listing 1.10(a) Messager.java

1 public class Messager {

CHAPTER 1: MULTITHREADED PROGRAMMING IN JAVA 25

O Joy U WN

9

10
11
12}

//synchronized void sendMessage (String msg) {
void sendMessage (String msg) {
System.out.print ("<" + msqg);
try {
Thread.sleep (1000);
} catch (InterruptedException e) {

System.out.println ("Interrupted: " + e.getStackTrace());

}
System.out.println (">");
}

Listing 1.10(b) MessageThread.java

1
2
3
4
5
6
7
8

9
10
11
12
13
14
15
16 }

class MessageThread implements Runnable {

String msg;
Messager target;
Thread t;

public MessageThread (Messager targ, String s) {
target = targ;

msg = s;
t = new Thread(this);
t.start();

}

public void run() {

target.sendMessage (msgqg);

}

Listing 1.10(c) SynchTest0.java

W J oy Ul WwWwN

public class SynchTestO {

public static void main(String args([]) {
Messager target = new Messager();
MessageThread messagerl = new MessageThread (target
MessageThread messager?2 = new MessageThread (target
MessageThread messager3 new MessageThread(target

// wait for threads to end by calling the join ()
try {
messagerl.t.join();
messager2.t.join();
messager3.t.join();
} catch (InterruptedException e) ({
System.out.println ("Interrupted");
}

, "Java");
, "Concurrent");
, "Programming") ;

method

26 JAvA CONCURRENT PROGRAMMING: A QUANTITATIVE APPROACH

1.6.2 Synchronized Blocks

In order to show how to synchronize a block of code rather than a method, | simply copied the three
classes introduced in the preceding section and renamed them from Messager.java to Messagerl.java,
from MessageThread. java t0 MessageThreadl . java, and SynchTest0.java t0 SynchTestl.java, as
shown in Listings 1.11(a), (b) and (c), respectively. Unlike the previous version, notice that the shared
Messagerl.java class has no synchronized keyword applied to its sendvessage method. Instead, the
synchroni zed keyword is applied to the target object in the run method of the MessageThreadl . java
class, which surrounds the statement of target.sendMessage (msg) as shown from lines 14 — 16 in
Listing 1.11(b) MessageThreadl . java.

If you run SynchTest1.java class as shown in Listing 1.11 (c), you should get an output similar to the
following:

<Java>
<Programming>
<Concurrent>

Namely, each message was flanked by “<” and ‘“>" as expected. As you see, we can apply
synchronization either at the shared resource level or at the thread level. From the programming point of
view, synchronizing a method is simpler than synchronizing a block; and in many cases, the two
approaches might be equivalent in terms of performance. However, when it comes to the scope of
locking, synchronizing a block should be considered first, as noted below.

EINote: Synchronizing methods versus synchronizing blocks: which one should be used? One
should in general favor synchronizing blocks over synchronizing methods, as the former generally
reduces scope of lock, which is beneficial for performance. Put it another way, it’s always a better choice
to lock only a critical section of code rather than an entire method. With a synchronized method, the lock
is acquired by the thread when it enters the method and released when it leaves the method, whereas with
a synchronized block, the thread acquires the lock only when it enters the synchronized block and
releases the lock as soon as it leaves the synchronized block.

In addition, one can synchronize different blocks using different lock objects within a method, if
necessary, which is unachievable when an entire method is synchronized. Therefore, synchronizing a
block provides extra finer granularity when needed.

Listing 1.11(a) Messagerl.java

public class Messagerl {
void sendMessage (String msg) {
System.out.print ("<" + msg);
try {
Thread.sleep(1000);
} catch (InterruptedException e) {
System.out.println("Interrupted: " + e.getStackTrace()):;

~N oUW

CHAPTER 1: MULTITHREADED PROGRAMMING IN JAVA 27

8
9
10
11

}
System.out.println (">");
}
}

Listing 1.11(b) MessageThreadl.java

O ~J oy Ul bW

Ne]

10
11
12
13
14
15
16
17
18

class MessageThreadl implements Runnable {
String msg;
Messagerl target;
Thread t;

public MessageThreadl (Messagerl targ, String s) {
target = targ;

msg = s;
t = new Thread(this);
t.start ()

}

public void run() {

synchronized (target) { // synchronized block
target.sendMessage (msqg) ;

}

Listing 1.11(c) SynchTestl.java

O J oUW N

e

10
11
12
13
14
15
16
17

1.7

public class SynchTestl {
public static void main(String args([]) {

Messagerl target = new Messagerl (),

MessageThreadl messagerl = new MessageThreadl (target, "Java");
MessageThreadl messager?2 = new MessageThreadl (target, "Concurrent");
MessageThreadl messager3 = new MessageThreadl (target, "Programming");
// wait for threads to end by calling the join () method

try |

messagerl.t.join();
messager2.t.join();
messager3.t.join();
} catch (InterruptedException e) {
System.out.println ("Interrupted");
}

}

INTER-THREAD COMMUNICATIONS

As we emphasized earlier, executions of threads often have to be coordinated in order to achieve
deterministic results. In order to program coordination among threads, some kind of inter-thread

28 JAvA CONCURRENT PROGRAMMING: A QUANTITATIVE APPROACH

communication mechanisms are called for. This section explores some options for coordinating threads,
from very primitive ones such as busy-wait or busy-spin, to advanced ones such as wait (), notify()
(which wakes up only one thread) and notifyall () (which wakes up all threads — more efficient if
many threads are waiting for the same lock).

Let’s begin with explaining the concept of busy-wait or busy-spin next.
1.7.1 Busy Wait / Busy Spin

Busy wait or busy spin means the same thing: A process or a thread runs in an infinite loop, checking
repeatedly if a certain condition has become true; and if the condition that it is waiting for becomes true,
it gets out of the infinite loop and continues. For example, the following code snippet does busy wait:

1 private boolean happened;

/] ..

while (!happened) {} // busy wait here - waste of CPU time
System.out.println (“It has just happened!”);

// do something else

g w N

Apparently, the above “do nothing” loop deprives other threads of access to CPUs and thus wastes
valuable CPU times. In general, busy-wait is considered an anti-pattern and should be avoided as much
as possible.

It’s possible to alleviate the CPU wasting impact that a busy-wait incurs by letting the running thread
sleep for a fixed period between consecutive condition-checking operations. For example, we can modify
line 3 in the above code snippet into the following:

3 while ('happened) {Thread.sleep (100);}

, which puts the running thread to sleep for 100 milliseconds before the next iteration starts. If the sleep
time is significantly longer than the time for checking the state of the condition variable, the running
thread will spend most of its time asleep and wastes very little CPU time.

However, an alternative like putting the running thread to sleep for a fixed period still is not a very
flexible and elegant solution to the busy-wait problem. Since its earlier versions, Java has provided
formal constructs for coordinating inter-thread communications. In the next section, we describe how
such constructs can help coordinate thread executions effectively and efficiently.

1.7.2 A Simple Buffer Accessed by a Single Thread

Let’s start with the simplest case: a simple buffer to be accessed by a single thread only. As shown in
Listing 1.12(a), this simpleBuffer has two fields, a constructor and two methods as explained below:

= An integer array named buffer to be used as an integer number container

= An integer field named currIndex, which designates the current array element available for storing a
new element

= A constructor for allocating memory for the array with a given capacity as well as for initializing the
currIndex field to zero

CHAPTER 1: MULTITHREADED PROGRAMMING IN JAVA 29

= A method named put (int i) that stores the given value of i at the currently available array
element. Note the post-increment operation in currIndex++ at line 13 that bumps the current index
to the next available array element in one statement.

= A method named get () that retrieves the latest array element located at the end of the array. This is
similar to a last-in-first-out (LIFO) data structure like a Stack, but that’s not important for the time
being. Eventually, we’ll change it into a first-in-first-out (FIFO) data structure like a Queue as will be
discussed later. In addition, note the pre-decrement operation in --currIndex at line 17 that moves
the index pointer back to the position that contains the last value stored in the buffer.

Next, we describe a single-threaded program that accesses this simple buffer.

Listing 1.12(a) SimpleBuffer.java

1 package jcp.chl.buffer.v0;

2

3 public class SimpleBuffer {

4 private final int[] buffer;
5
6
7
8

private int currIndex;

SimpleBuffer (int capacity) {
this.buffer = new int[capacity];

9 this.currIndex = 0;

10 }

11

12 final void put(int i) {

13 buffer[currIndex++] = i;
14 }

15

16 final int get () {

17 return buffer[--currIndex];
18 }

19 }

Listing 1.12(b) shows a SimpleBufferTest Java class that does the following:

= Lines 6 - 7: Initialize the capacity parameter for the buffer to 10 and create a SimpleBuffer object
with that capacity accordingly.

= Lines 10 — 13: Fill the buffer up to the capacity as specified above by calling the simpleBuffer
object’s put method.

= Lines 15 — 18: Get (remove and return) the element of the integer array buffer one by one in the
LIFO order by calling the simpleBuffer object’s get method.

Running this simple example would result in the following output:

SimpleBuffer: put0123456789
SimpleBuffer: get9876543210
done

As you see, nothing surprises us when the above buffer is accessed by a single thread. Next, we’ll see
immediately what would happen if the above simple buffer were accessed by two threads concurrently.

30

JAvA CONCURRENT PROGRAMMING: A QUANTITATIVE APPROACH

Listing 1.12(b) SimpleBufferTest.java

1
2
3
4
5
6
-
8

9

10
11
12
13
14
15
16
17
18
19
20
21

1.7.3 The Simple Buffer Accessed by Two Threads: Busy-Wait with no Conditional

package jcp.chl.buffer.vO0;

public class SimpleBufferTest ({
public static void main(String args[]) {

}

}

int capacity = 10;
SimpleBuffer simpleBuffer = new SimpleBuffer (capacity);

System.out.print ("SimpleBuffer: put");

for (int 1 = 0; 1 < capacity; i++) {
simpleBuffer.put (i) ;
System.out.print (" " + 1i);

}

System.out.print ("\nSimpleBuffer: get");

for (int 1 = 0; 1 < capacity; i++) {
System.out.print (" " + simpleBuffer.get());

}

System.out.print ("\ndone") ;

Check (OOB)

For the same simple buffer as shown in Listing 1.12(a), let’s set up two threads to access it concurrently:
one named Producer.java as shown in Listing 1.13(a) for filling the buffer by calling its put method
and the other named Consumer. java as shown in Listing 1.13(b) for consuming the buffer by calling its
get method. Take a moment and examine how the constructor for each class is coded: First, the
simpleBuffer field is initialized with the simpleBuffer object passed-in, and then a new thread is

created with its start method called.

As you see from the following two listings, the run method of the Producer class, shown from lines 14
— 16 in Listing 1.13(a), uses an infinite while-loop to keep filling the buffer by calling its put method.
On the other hand, the run method of the Consumer class, shown from lines 11 — 14 in Listing 1.13(b),

uses an infinite while-loop to keep emptying the buffer by calling its get method.

Listing 1.13(a) Producer.java

~N o0 wWwN

package jcp.chl.buffer.vl;

class Producer implements Runnable {
SimpleBuffer simpleBuffer;

Producer (SimpleBuffer simpleBuffer) {

this.simpleBuffer = simpleBuffer;

CHAPTER 1: MULTITHREADED PROGRAMMING IN JAVA 31

8 new Thread(this, "Producer").start();
9 }

10

11 public void run() {

12 int i = 0;

13

14 while (true) {

15 simpleBuffer.put (i++);
16 }

17 }

18 1}

Listing 1.13(b) Consumer.java

1 package jcp.chl.buffer.vl;

2

3 public class Consumer implements Runnable {
4 SimpleBuffer simpleBuffer;

5

6 Consumer (SimpleBuffer simpleBuffer) {

7 this.simpleBuffer = simpleBuffer;

8 new Thread(this, "Consumer").start();
9 }

10

11 public void run() {

12 while (true) {

13 simpleBuffer.get () ;

14 }

15 }

16 }

Listing 1.13(c) shows the test driver. It creates a 10-element SimpleBuffer object and passes it to the
Producer and Consumer threads. We do not have to call the start method for each thread in the test
driver, as it’s already coded into the constructor of each thread class. Now, if you just ran the test driver
with the SimpleBuffer class as shown in Listing 1.12(a) with no modifications, you would quickly get
an OutOfBounds (OOB) exception or ArrayIndexOutOfBoundsException as shown below:

Exception in thread "Producer" Exception in thread "Consumer" java.lang.ArraylndexOutOfBoundsException: 10

at jcp.chl.buffer.vl.SimpleBuffer.put(SimpleBuffer.java:13)

at jep.chl.buffer.vl.Producer.run(Producer.java:15)

at java.lang.Thread.run(Thread.java:744)
java.lang.ArraylndexOutOfBoundsException: 10

at jcp.chl.buffer.vl.SimpleBuffer.get(SimpleBuffer.java:17)

at jcp.chl.buffer.vl.Consumer.run(Consumer.java:13)

at java.lang.Thread.run(Thread.java:744)

That’s because the SimpleBuffer class shown in Listing 1.12(a) does not check full and empty
conditions: A buffer should array not be attempted for filling when it’s full and it should not be
attempted for retrieving when it’s empty. The next section describes how to add such conditional checks.

Listing 1.13(c) SimpleBufferTest.java

32 JAvA CONCURRENT PROGRAMMING: A QUANTITATIVE APPROACH

package jcp.chl.buffer.vl;

1
2
3 public class SimpleBufferTest {

4 public static void main(String args([]) {

5 SimpleBuffer simpleBuffer = new SimpleBuffer (10);
[new Producer (simpleBuffer);

7 new Consumer (simpleBuffer);

8 }

9 1}

1.7.4 The Simple Buffer Accessed by Two Threads: Busy-Wait with Conditional
Check but no Synchronization (Livelock)

Listing 1.13(d) shows a new version of the SimpleBuffer class that checks full and empty conditions. In
addition, it uses busy-wait on the above two conditions as shown from lines 13 — 14 for the put method
and from lines 22 - 23 for the get method, respectively. Note also that in the put method, we have
separated the index post-increment operation out of the buffer filling operation, while in the get method,
we have separated the value to be returned from the removing operation as well. The latter is especially
necessary, as we need to decrement the current index before returning the value.

So what would happen if we execute the test driver shown in Listing 1.13(c) with the modified
SimpleBuffer shown in Listing 1.13(d)? In fact, as shown in Figure 1.6, a livelock situation had
occurred. In that case, the consumer was attempting to get the first element indexed at 0 while the
producer was attempting to fill the last element indexed at 9; note the colored square at the upper right
corner, indicating that the program was still running.

Listing 1.13(d) SimpleBuffer.java

1 package jcp.chl.buffer.vl;

2

3 public class SimpleBuffer {

4 private final int[] buffer;
5
6
7
8

private int currIndex;

SimpleBuffer (int capacity) {
this.buffer = new int[capacity];

9 this.currIndex = 0;

10 }

11

12 final void put(int i) {

13 while (isFull()) {

14 }

15 buffer[currIndex] = 1i;

16 System.out.println (Thread.currentThread() .getName() + ": put " + i
17 + " at " 4+ currlIndex);
18 currIndex++;

19 }

20

21 final int get() {

CHAPTER 1: MULTITHREADED PROGRAMMING IN JAVA 33

22 while (isEmpty()) {

23 }

24

25 int value = buffer[--currIndex];
26 System.out.println (Thread.currentThread() .getName() + ": get " + value
27 + " at " 4+ currlIndex);

28 return value;

29 }

30

31 final boolean isFull () {

32 return currIndex == buffer.length;
33 }

34

35 final boolean isEmpty () {

36 return currlIndex == 0;

37 }

38 }

& Console £ | %; Packages| 3 Call Hierarchy| ®

SimpleBufferTest (2) [Java Application] C\mspc\myapp\Java\jdk1.7.0_45_64bit\b
Consumer: get 137 at 1
Producer: put 138 at 2
Consumer: get 134 at ©
Producer: put 139 at 1
Producer: put 140 at 1
Producer: put 141 at 2
3
a4

Producer: put 142 at

Producer: put 143 at

Producer: put 144 at 5
Producer: put 145 at 6
Producer: put 146 at 7
Producer: put 147 at 8
Producer: put 148 at 9

Figure 1.6 Livelock that occurred with the busy-wait/unsynchronized SimpleBuffer example
1.7.5 Detecting Locking Issues

How can we detect a livelock or any locking issues in general? The jvisualvm tool can help. This is my
favorite Java profiling tool, which comes free and bundled together with every JDK release.

You can start jvisualvm up by double-clicking on the jvisualvm.exe file in the bin directory of a JDK
install. Then, select the running Java process you want to profile and click on the Threads tab. Figure 1.7
shows the screenshot when the livelock occurred as described above on my Windows 8 laptop while the
preceding example was running. Notice the color-coded state for each thread under the Timeline tab:
Green for Running, Purple for Sleeping, Yellow for Wait and Red for Monitor. (You can find the colored
versions of images from this text’s website at http://www.perfmath.com/jcp/colored _images.pdf.) Then,
at the lower half of the panel, it clearly shows that the Consumer thread was executing line 22 while the
Producer thread was executing line 13 of the SimpleBuffer class shown in Listing 1.13(d), which
corresponds to the isFull while-loop in the put method and isEmpty while-loop in the get method,
respectively. As you see, this tool can help you pinpoint down exactly where in the Java source code a
livelock is happening.

http://www.perfmath.com/jcp/colored_images.pdf

34 JAvA CONCURRENT PROGRAMMING: A QUANTITATIVE APPROACH

Next, we describe what will happen if we add synchronization to all methods of the SimpleBuffer class
shown in Listing 1.13(d).

O jcp.chi.buffer.vi.SimpleBufferTest (pid 7476)
l Threads

Live threads: 12 Thread Dump

Daemon threads: 9

Threads inspector l

| Timeline | Table | Details x{
& Q | show:]AIIThreads v

Threads i 5:30 5:40 5:50 [m:s]

@ RMI TCP Connection(1)}-192... A

@ RMITCP Accept-0
O DestroylavaVM

& Consumer

B Producer

[Attach Listener

O Signal Dispatcher

0O Finalizer }
O Reference Handler] \) v
< I >
Running E3 Sleeping [Wait [E3 Monitor
’ Threads inspector x
[Attach Listener 2 A
ConsUMmen I "Consumer"” - Thread t@10

java.lang.Thread.State: RUNNABLE
I:l DestroylavaVM \ at jcp.chl.buffer.vl.SimpleBuffer.get (SimpleBuffer.java:22)
D Finalizer at jcp.chl.buffer.vl.Consumer.run (Consumer.java:13)
at java.lang.Thread.run (Thread.java:744)
|:| JMX server connection timeout 16 ‘

Producer
[C] RMI Scheduler(0) ‘
[] RMITCP Accept-0

Locked ownable synchronizers:
- None

| "Producer" - Thread t@9

java.lang.Thread.State: RUNNABLE
I:l RMITCP Connection(1)-192.168.10 at jcp.chi.buffer.vi.SimpleBuffer.put (SimpleBuffer.java:13)
at jecp.chi.buffer.vli.Producer.run(Producer.java:15)

I:I RMI TCP Connection(2)-192.168.10
v at java.lang.Thread.run(Thread.java:744)

< >

Locked ownable synchronizers:
- None

] Refresh [

Figure 1.7 The states of the Producer and Consumer threads when a livelock occurred

1.7.6 The Simple Buffer Accessed by Two Threads: Busy-Wait with Conditional
Check and Synchronization (Starvation)

The previous example shows that the two threads livelocked with a version of the SimpleBuffer class
that implements busy-wait and conditional check but no synchronization. What happens if we modify
that simpleBuffer class shown in Listing 1.13(d) to have synchronization added for both the put and
get methods. Listing 1.14 shows the modified version of the SimpleBuffer class, with the

CHAPTER 1: MULTITHREADED PROGRAMMING IN JAVA 35

synchronized keyword added to all four methods of the SimpleBuffer class. The Producer, Consumer
and test driver classes are not listed here, as they remain the same.

Listing 1.14 SimpleBuffer.java

package jcp.chl.buffer.v2;

1

2

3 public class SimpleBuffer {

4 private final int[] buffer;
5 private int currIndex;

6
7
8

SimpleBuffer (int capacity) {
this.buffer = new int[capacity];

9 this.currIndex = 0;

10 }

11

12 final synchronized void put(int i) {
13 while (isFull()) {}

14 buffer[currIndex] = 1i;

15 System.out.println (Thread.currentThread() .getName() + ": put " + i
16 + " at " 4+ currlIndex);

17 currlIndex++;

18 }

19

20 final synchronized int get() ({

21 while (isEmpty()) {}

22 int value = buffer[--currIndex];

23 System.out.println (Thread.currentThread () .getName() + ": get " + value
24 + " at " 4+ currIndex);

25 return value;

26 }

27

28 final synchronized boolean isFull () {
29 return currIndex == buffer.length;
30 }

31

32 final synchronized boolean isEmpty () {
33 return currlIndex == 0;

34 }

35 }

Figure 1.8 shows the running state of this example on my Eclipse IDE, indicating that the producer was
stuck after filling the last element while the consumer was stuck after retrieving the first element. On the
other hand, Figure 1.9 shows the thread states on jvisualvm, indicating that the Consumer was running
(green color) while the Producer was blocked (red). The lower-half panel further indicates more
explicitly that the Consumer was in RUNNABLE state at isEmpty method while the Producer was in
BLOCKED state at the put method’s isFull method call.

36 JAvA CONCURRENT PROGRAMMING: A QUANTITATIVE APPROACH

B Conscle 2 |%p Packages|} Call Hierarchy| m %
PCTest [Java Application] CAmspcimyapp\Java\jdk1.7.0 45 64bit\bin\javaw.e]

Producer: put @ at @
Producer: put 1 at 1
Producer: put 2 at 2
Producer: put 3 at 3
Producer: put 4 at 4
Producer: put 5 at 5
Producer: put 6 at 6
Producer: put 7 at 7
Producer: put 8§ at §

Consumer: get
Consumer: get
Consumer: get
Consumer: get
Consumer: get
Consumer: get
Consumer: get
Consumer: get
Consumer: get
Consumer: get

@ =R Wt] 0D
w
-+

@ N WA NGO

Figure 1.8 The SimpleBuffer starvation situation: The Producer was stuck after filling the last element
while the consumer was stuck after retrieving the first element

O Consumer
E Producer v

< >

[Running B Sleeping [C1Wait =3 Monitor

‘ Threads inspector x
[Attach Listener 2015-04-28 19:34:42
[#] consumer
"Consumer” - Thread t@lo
[pestroyzavavm java.lang.Thread.State: RUNNAELE
DFmaIlzer at jep.chl.buffer.v2.S5impleBuffer.isEmpty (SimpleBuffer.jawva:30)
- locked <4aad93fé> (a jep.chl.buffer.v2.SimpleBuffer)
[[] amx server connection timeout 16 at jep.chl.buffer.v?.SimpleBuffer.get (SimpleBuffer.java:20
Producer - locked <4aad93fé> (a jep.chl.buffer.v2.SimpleBuffer)
at jep.chl.buffer.v2.Consumer.run (Consumer.java:13)
[rvr Scheduler(0) at java.lang.Thread.run(Thread.java:744

] RMITCP Accept-0
Locked ownable synchronizers:
[RMI TCP Connection(1)-192.168.10.1 _ None

[1RMITCP Connection(2}-192.168.10.1
"Producer” - Thread t@3

[RMI TCP Connection(3)-192.168.10.1 java.lang.Thread.State:; SLOCKED
I:‘Reference Handler at jcp.chl.buffer.v2.SimpleBuffer.put (SimpleBuffer.java:13)

- waiting to lock <4aad93f6> (a jcp.chl.buffer.v2.S5impleBuffer) owned by "Consumer™ t@10
[signal Dispatcher at jep.chl.buffer.v2.Producer.run(Producer.java:ls

at java.lang.Thread.run(Thread.java:744)}

Locked ownable synchronizers:
- Hone

Figure 1.9 Thread states in the starvation situation: One was in RUNNABLE state while the other was in
BLOCKED state permanently

Next, we’ll see how we can solve the livelock and starvation issues with guarded blocks and
asynchronous waiting.

CHAPTER 1: MULTITHREADED PROGRAMMING IN JAVA 37

1.7.7 Guarded Blocks with Asynchronous Waiting

Using the SimpleBuffer example, we demonstrated that:

= Busy-wait with no synchronization may result in livelock issues
= Busy-wait with synchronization may result in starvation issues

In this section, we demonstrate that guarded blocks with asynchronous waiting can resolve both the
livelock and starvation issues discussed in the preceding sections. Listing 1.15 shows the SimpleBuffer
class implemented with guarded blocks. Here, the try-wait-catch blocks in the put and get methods
are guarded by their while (isFull()) and while (isEmpty()) loops, respectively. It is imperative
to get rid of busy-waits as they do not only waste CPU time but also result in livelock and starvation
issues. In addition, it’s known that spurious wakeups may occur for no reasons, namely, a producer or
consumer thread might wake up and only find out that the buffer still is full or empty, in which case, it
goes back to sleep again.

Observe the following steps when implementing a guarded block:

1. First, synchronize the method by adding the synchronized keyword.

2. Put the guarded block in a while-loop, which is controlled by a wait condition.

3. Call notify() to wake up the waiting thread only after completing all tasks or before exiting the
synchronized method. In other words, do not wake up the waiting thread pre-maturely.

Next, we discuss the result of running this example, following Listing 1.15.

Listing 1.15 SimpleBuffer.java with guarded blocks

package jcp.chl.buffer.v3;

1

2

3 public class SimpleBuffer {

4 private final int[] buffer;
5 private int currIndex;

6
7
8

SimpleBuffer (int capacity) {
this.buffer = new int[capacity];

9 this.currIndex = 0;

10 }

11

12 final synchronized void put(int i) {

13 while (isFull()) {

14 try {

15 wait ()

16 } catch (InterruptedException e) {

17 System.out.println ("InterrupedException caught: "
18 + e.getStackTrace());

19 }

20 }

21 buffer[currIndex] = 1i;

22 System.out.println (Thread.currentThread() .getName() + ": put " + i

23 + " at " + currlIndex);

38 JAvA CONCURRENT PROGRAMMING: A QUANTITATIVE APPROACH

24 currIndex++;

25 notify();

26 }

27

28 final synchronized int get() {

29 while (isEmpty()) {

30 try |

31 wait () ;

32 } catch (InterruptedException e) {
33 System.out.println ("InterrupedException caught: "
34 + e.getStackTrace());

35 }

36 }

37

38 int value = buffer[--currIndex];

39 System.out.println (Thread.currentThread() .getName () + ": get " + value
40 + " at " + currlIndex);

41 notify();

42 return value;

43 }

44

45 final synchronized boolean isFull() {
46 return currIndex == buffer.length;

47 }

48

49 final synchronized boolean isEmpty () {
50 return currlIndex == 0;

51 }

52 }

To verify the above version of the SimpleBuffer implementation, I ran it on my Windows 8 laptop, with
the following result obtained on my Eclipse console:

Producer: put 39734 at 0
Producer: put 39735 at 1
Producer: put 39736 at 2
Producer: put 39737 at 3
Producer: put 39738 at 4
Producer: put 39739 at 5
Producer: put 39740 at 6
Producer: put 39741 at 7
Producer: put 39742 at 8
Producer: put 39743 at 9
Consumer: get 39743 at 9
Consumer: get 39742 at 8
Consumer: get 39741 at 7
Consumer: get 39740 at 6
Consumer: get 39739 at 5
Consumer: get 39738 at 4

CHAPTER 1: MULTITHREADED PROGRAMMING IN JAVA 39

Consumer: get 39737 at 3
Consumer: get 39736 at 2
Consumer: get 39735 at 1
Consumer: get 39734 at 0

In addition, Figure 1.10, obtained with the jvisualvm tool, shows that the consumer and producer threads
blocked and ran alternately. Note that at the time when the screenshot was being taken, the Consumer
was waiting for a lock while the Producer was holding several locks.

| Timeline | Table | Details

@, Q| Show: |AIIThreads v‘
—TT——T—T——T—T—T—T— 1T T T
Threads | 0:10 0:20 0:30 0:4
|
O Consumer :_i:_ :—:P N |
O Producer [| | =
£
| Threads inspector
[] Attach Listener 2015-04-28 20:19:15
Consumer
"Consumer” - Thread t@l0

[]DESVDﬂBVEVM java.lang.Thread.State: BLOCEED
[] Finalizer at java.lang.Object.wait (Native Method)

- waiting on <586cTaée> (a jep.chl.buffer.wv3.SimpleBuffer)
[]JMXSewercmmEQWHU”mUUtlﬁ at jawva.lang.Cbject.wait (Cbject.java:503)
Producer at jop.chl.buffer.v3.5impleBuffer.get (SimpleBuffer.java:31)

at jcp.chl.buffer.v3.Consumer.run (Consumer.java:1l3)
[] RMI Scheduler(0) at java.lang.Thread.run(Thread.java:744)

[RMI TCP Accept-0
Locked ownable synchronizers:
I:‘ RMI TCP Connection(1)-192.168.10.1 _ None
D RMI TCP Connection(2)-192.168.10.1
"Producer” - Thread t@9

] RMI TCP Connection(3)-192.168.10.1 java.lang.Thread.State: RUNNABLE

] Reference Handler

[signal Dispatcher

at java.
at java.
at java.
at java.

io.FileCutputStream.writeBytes (Native Method)
ip.FileQutputStream.write (FileCutputStream.java:345)
io.BufferedCutputStream. flushBuffer (BufferedfutputStream.java:82)
io.BufferedCutputStream. flush (BufferedCutputdtream. java:140)

- locked <2a89d1058» (a java.io.BufferedOutputStream)
at java.io.PrintStream.write (PrintStream.java:482)

- locked <2d9cl743> (a java.
writeBytes (StreanEncoder.java:221)

at sun.nio.cs.5treamEncoder

at sun.nio.cs.5treamEncoder.

at sun.nio.cs.S5treamEncoder

io.PrintStream)

implFlushBuffer (StreamEncoder.java:291)

.flushBuffer (StreamEncoder.java:104)
- locked <62bb471%> (a java.

io.CutputStreanflriter)

at java.io.CutputStreamWriter.flushBuffer (CutputStreanWriter.java:185)
at java.io.PrintStream.write (PrintStream.java:527)

| Refresh | at java.io.PrintStream.print (PrintStream.java:&69)

Figure 1.10 States of the Producer and Consumer threads with the SimpleBuffer class implemented with
guarded blocks

However, we still have one more task to accomplish with this SimpleBuffer class: Turning it from a
last-in-first-out stack data structure into a first-in-first-out queue data structure, which is the subject of
the next section.

40 JAVA CONCURRENT PROGRAMMING: A QUANTITATIVE APPROACH

1.7.8 Turning the SimpleBuffer Class into a First-In-First-Out Queue-Like Data
Structure

As shown in Listing 1.16, to turn the previous SimpleBuffer class into a first-in-first-out, queue-like
data structure, the following changes were made:

1. Two fields, head and tail, were added for tracking the head and the tail of the queue. These two
fields are also initialized in the constructor, as shown from lines 12 — 13.

2. The guarded blocks, lines 17 — 24 for the put method and lines 37 - 44 for the get method,
respectively, were not changed, since they are only tied to the condition of the buffer — whether
full or empty.

3. For the put method, line 25 shows that the buffer is filled at the tail. In addition, the tail has to be
wrapped to the beginning of the buffer when the buffer is full.

4. For the get method, line 46 shows that the element was taken at the head of the buffer.
Similarly, lines 49 — 50 show that when the head reaches the end of the buffer, it has to be
wrapped to the beginning of the buffer.

Running this example resulted in the following output on my Eclipse console, which verifies the
expected first-in-first-out behavior:

Producer: put 69023 at 3
Producer: put 69024 at 4
Producer: put 69025 at 5
Producer: put 69026 at 6
Producer: put 69027 at 7
Producer: put 69028 at 8
Producer: put 69029 at 9
Producer: put 69030 at 0
Producer: put 69031 at 1
Producer: put 69032 at 2
Consumer: get 69023 at 3
Consumer: get 69024 at 4
Consumer: get 69025 at 5
Consumer: get 69026 at 6
Consumer: get 69027 at 7
Consumer: get 69028 at 8
Consumer: get 69029 at 9
Consumer: get 69030 at 0
Consumer: get 69031 at 1
Consumer: get 69032 at 2

Next, we examine a deadlock example, showing how a deadlock may occur with two threads, both
waiting for the other party to release its lock.

Listing 1.16 SimpleBuffer.java that acts like a queue

CHAPTER 1: MULTITHREADED PROGRAMMING IN JAVA 41

1 package jcp.chl.buffer.v4d;

2

3 public class SimpleBuffer {

4 private final int[] buffer;

5 private int currIndex;

6 private int head;

7 private int tail;

8

9 SimpleBuffer (int capacity) {

10 this.buffer = new int[capacity];

11 this.currIndex = 0;

12 this.head = 0;

13 this.tail = 0;

14 }

15

16 final synchronized void put(int i) {

17 while (isFull()) {

18 try {

19 wait () ;

20 } catch (InterruptedException e) {
21 System.out.println ("InterrupedException caught: "
22 + e.getStackTrace());

23 }

24 }

25 buffer[tail] = 1i;

26 System.out.println (Thread.currentThread() .getName() + ": put " + i
27 + " at " 4+ tail);

28

29 if (++tail == buffer.length)

30 tail = 0;

31

32 currlndex++;

33 notify();

34 }

35

36 final synchronized int get() ({

37 while (isEmpty()) {

38 try {

39 wait () ;

40 } catch (InterruptedException e) {
41 System.out.println ("InterrupedException caught: "
42 + e.getStackTrace());

43 }

44 }

45

46 int value = buffer[head]:;

47 System.out.println (Thread.currentThread() .getName () + ": get " + value
48 + " at " + head):;

49 if (++head == buffer.length)

50 head = 0;

51

52 —-—-currlndex;

42 JAVA CONCURRENT PROGRAMMING: A QUANTITATIVE APPROACH

53 notify();

54 return value;

55 }

56

57 final synchronized boolean isFull() {
58 return currIndex == buffer.length;
59 }

60

61 final synchronized boolean isEmpty () {
62 return currIndex == 0;

63 }

64 }

1.8 DEADLOCK

First, it’s important to keep in mind that Java does not prevent deadlocks from happening. It’s an
application’s responsibility to take precaution to prevent deadlocks from happening or to have sound
strategies to cope with potential deadlocks when they do occur.

A deadlock occurs when two threads have a circular dependency on a pair of synchronized objects or
locks. For example, suppose one thread acquires the lock on object x and another thread acquires the
lock on object . If the thread in x attempts to call a synchronized method on y, it will block as expected.
However, if the thread in y attempts to call a synchronized method on x, it would wait forever, as to
access X, it would have to release its own lock on y so that the thread x could complete. The next
example shows how a circular dependency on locks could potentially happen, leading to a deadlock
situation.

1.8.1 A Deadlock Example with a Parent and a Child Thread Calling the callMe
Method of two Non-Threaded Objects

Next, we use a simple example to demonstrate how deadlocks may occur. We have two classes: X.java
and Y.java as shown in Listings 1.174(a) and (b), respectively. Each of them has a pair of methods,
named callMe and hangUp, both of which are synchronized. Within each callMe method, a thread asks
the other party to hang up by invoking the other party’s hangUp method. At this point, | suggest that you
take a few minutes to get familiar with the callMe and hangUp methods for each of the X and Y classes.
In particular, note that a sleepTime parameter can be passed to the callMe method of each class so that
each object can sleep for a pre-specified amount of time in its callMe method.

Listing 1.17(a) X.java

1 package jcp.chl.deadlock;

2

3 public class X {

4 public synchronized void callMe(Y y, long sleepTime) {
5 String name = Thread.currentThread () .getName () ;

6 System.out.println (name +

7 " entered x thread class's callMe (Y y) method");

CHAPTER 1: MULTITHREADED PROGRAMMING IN JAVA 43

8

9 try {

10 Thread.sleep(sleepTime) ;

11 } catch (Exception e) {

12 System.out.println ("Thread x interrupted");

13 }

14

15 System.out.println (name

16 + " attempting to call x thread class's Y.hangUp () method");
17 y.hangUp () ;

18 }

19

20 public synchronized void hangUp () {

21 System.out.println("Inside x thread class's X.hangUp ()");
22 }

23 '}

Listing 1.17(b) Y.java

1 package jcp.chl.deadlock;
2
3 public class Y {
4 public synchronized void callMe (X x, long sleepTime) {
5 String name = Thread.currentThread() .getName () ;
6 System.out.println (name +
7 " entered y thread class callMe (X x) method");
8
9 try {
10 Thread.sleep(sleepTime) ;
11 } catch (Exception e) {
12 System.out.println ("Thread Y interrupted");
13 }
14
15 System.out.println (name
+ " attempting to call y thread class's X.hangUp () method");
16 x.hangUp () ;
17 }
18
19 public synchronized void hangUp () {
20 System.out.println("Inside y thread class's Y.hangUp () method");
21 }
22 '}

Now let’s test the above two non-threaded classes in a single-threaded test driver as shown in Listing
1.18(a). In this case, we first create the x and y objects as shown at lines 5 and 6, respectively. Then, we
call each object’s callMe method at lines 8 and 11, respectively. Since all operations occur within a
single thread, we do not expect a deadlock, as is verifiable with the following output obtained by running
it on my Eclipse IDE:

main entered x thread class's callMe (Y y) method
main attempting to call x thread class's Y.hangUp () method
Inside y thread class's Y.hangUp () method

44 JaAvA CONCURRENT PROGRAMMING: A QUANTITATIVE APPROACH

Back in Main thread after x.callMe

main entered y thread class callMe (X x) method

main attempting to call y thread class's X.hangUp () method
Inside x thread class's X.hangUp ()

Back in Main thread after y.callMe

Next, let’s see what happens when we attempt to use two threads to test it.

Listing 1.18(a) DeadlockDemo0.java

1 package jcp.chl.deadlock;

2

3 public class DeadlockDemoO {

4 public static void main(String args([]) {

5 X x = new X();

[Y y = new Y();

-

8 x.callMe(y, 0);

9 System.out.println ("Back in Main thread after x.callMe\n---");
10

11 y.callMe (x, 0);

12 System.out.println ("Back in Main thread after y.callMe");
13 }

14 }

Listing 1.18(b) shows a test driver for the above two non-threaded classes. As with the preceding single-
threaded test driver, we create an x object and a y object at lines 4 and 5, respectively. However, the
difference is that this test driver is a threaded class as it implements the Runnable interface; so we can
create and start a child thread in the parent’s constructor from lines 9 — 10 and invoke the x object’s
callMe method on the y object at line 12. In the run method of the threaded parent object, we invoke the
y object’s callMe method on x at line 17.

Now let’s run the test driver shown in Listing 1.18(b) and see what would happen. As you see, the parent
and child threads were deadlocked without being able to proceed, with the following output obtained
from my Eclipse IDE’s console:

Parent Thread entered x thread class's callMe (Y y) method

Child Thread entered y thread class callMe (X x) method

Child Thread attempting to call y thread class's X.hangUp () method
Parent Thread attempting to call x thread class's Y.hangUp () method

Next, let’s see how the jvisualvmtool can help us diagnose this deadlock.

Listing 1.18(b) DeadlockDemol.java

package jcp.chl.deadlock;

1
2
3 public class DeadlockDemol implements Runnable {
4 X x = new X();

CHAPTER 1: MULTITHREADED PROGRAMMING IN JAVA 45

5 Y v = new Y();

6

7 DeadlockDemol () {

8 Thread.currentThread () .setName ("Parent Thread");
9 Thread t = new Thread(this, "Child Thread");
10 t.start();

11

12 x.callMe(y, 1000);

13 System.out.println ("Back in Parent thread");
14 }

15

16 public void run() {

17 y.callMe(x, 0);

18 System.out.println ("Back in Parent thread");
19 }

20

21 public static void main(String args([]) {

22 new DeadlockDemol () ;

23 }

24 '}

1.8.2 Diagnosing Deadlocks Using the jvisualvm Tool

While the two threads were deadlocked, | started up the jvisualvm tool and checked the Monitor tab as
shown in Figure 1.11. Unlike the situation with a livelock, the CPUs were barely breathing when the
deadlock occurred.

CPU X
CPU usage: 0.0% GC activity: 0.0%
100%
80%
50%
40%
20%
0% = T - T T T
7:08:00 PM 7:08:30 PM 7:09:00 PM 7:0%:30 Pl
O CPU usage M GC activity

Figure 1.11 Zero CPU usage during the deadlock period

I then switched to the Threads tab immediately. As shown in Figure 1.12, both the parent and child
threads were in red, indicating that they were waiting for each other to release the locks and deadlocked.

46 JAVA CONCURRENT PROGRAMMING: A QUANTITATIVE APPROACH

Then, in the lower panel, | checked the Child and Parent threads and verified further that they were
indeed deadlocked with even more verbose test messages describing that:

= Child Thread locked on the Y.callMe method at Y.java’s line 16, namely, the
x.hangUp () statement.

= Parent Thread locked on the X.callMe method at X.java’s line 17, namely, the y.hangUp()
statement.

C jcp.chil.deadlock.DeadlockDemo1 (pid 11160)

‘ Threads
Live threads: 12 Deadlock detected!
Daemon threads: 10 Take a thread dump to get mare info.

‘ Timeline | Table | Details

@ Q @.| Show: |AII Threads w

Threads %l:l:i:ll]I FTTTTT7T] IIII:1IIII [T 11711 II]:QIJ‘ [T 111711 IIII:Z}IIII
0 child Thread

O Attach Listener

O Signal Dispatcher

O Finalizer

O Reference Handler

O Parent Thread #

‘ Threads inspector

[Attach Listener 2015-04-29 19:08:03
Child Thread
"Child Thread" - Thread t@9
|:|Fma\|zer java.lang.Thread.Scate: SLOCKED
D IMX server connection timeout 14 at jcp.chl.deadlock.X.hangUp(X.java:21)
- waiting to lock <785850e3> (a jcp.chl.deadlock.X) owned by "Parent Thread" tEl

F @..CE at jecp.chl.deadlock.Y.callMe (¥Y.java:18)
DRMISCheduIer(U) - locked <266301dc> (a2 jcp.chl.deadlock.Y)
at jcp.chl.deadlock.DeadlockDemol. run (DeadlockDemol. java:17)
DRMITCPACCEN’O at java.lang.Thread.run(Thread.java:744)
I:‘ RMI TCP Connection(1}-192.168.10.1
Locked ownable synchronizers:
I:‘ RMITCP Connection(2}-192.168.10.1 _ Hone
I:‘ RMITCP Connection(3}-192.168.10.1
"Parent Thread" - Thread t@l
[Reference Handlar java.lang.Thread.State: BLOCKED
D Signal Dispatcher at jcp.chl.deadlock.Y.hangUp(¥.java:20)

— waiting to lock <266301dec> (a jep.chl.deadlock.¥Y) owned by "Child Thread" t@3
at jecp.chl.deadlock.X.callMe (X.java:17)

- locked «<7858350e3> (a jcp.chl.deadlock.X)

at jcp.chl.deadlock.DeadlockDemol.<init> (DeadlockDemol.java:12)

at jecp.chl.deadlock.DeadlockDemol.main (DeadlockDemol.java:22)

Locked ownable synchronizers:
- Hone

| Refresh |

Figure 1.12 A deadlock detected on the jvisualvm tool

In addition, note the alert displayed at the upper right corner in Figure 1.12: “Deadlock detected!
Take a thread dump to get more info.” | took a thread dump by clicking the button there on the
jvisualvm tool, with the relevant part shown in Listing 1.19. The first and last segments in Listing 1.19

CHAPTER 1: MULTITHREADED PROGRAMMING IN JAVA 47

show similar stack trace information. The middle segment under “Found one Java-level deadlock:”
shows a more explicit description of the deadlock between the parent and the child threads that the Child
Thread was waiting to lock a monitor held by the Parent Thread, while the Parent Thread was waiting to
lock a monitor held by the Child Thread.

This deadlock is obvious and easily detected by the jvisualvm tool. However, with real products,
debugging deadlock issues is hard for two reasons:

= There might not be an exact execution path for a deadlock to occur, as it may depend on how the
CPU schedules its time-slicing from time to time.

= Deadlocks do not necessarily happen only when two threads or two locks get involved. It depends
more on a convoluted sequence of events than the number of threads or locks.

Still, tools like jvisualvm can help detect deadlocks as we have demonstrated here.

Listing 1.19 Thread dump for the deadlock example (partial)

"Child Thread" prio=6 tid=0x000000000234d000 nid=0x24ec waiting for monitor entry [0x0000000011fdf000]
java.lang.Thread.State: BLOCKED (on object monitor)
at jcp.chl.deadlock.X.hangUp(X.java:21)
- waiting to lock <0x00000007ab453ce0> (a jcp.chl.deadlock.X)
at jep.chl.deadlock.Y.callMe(Y.java:16)
- locked <0x00000007ab455670> (a jcp.chl.deadlock.Y)
at jcp.chl.deadlock.DeadlockDemo1l.run(DeadlockDemo1l.java:17)
at java.lang.Thread.run(Thread.java:744)

Locked ownable synchronizers:
- None
"Parent Thread" prio=6 tid=0x0000000002253000 nid=0x24dc waiting for monitor entry [0x000000000217f000]
java.lang.Thread.State: BLOCKED (on object monitor)
at jcp.chl.deadlock.Y.hangUp(Y.java:20)
- waiting to lock <0x00000007ab455670> (a jcp.chl.deadlock.Y)
at jep.chl.deadlock.X.callMe(X.java:17)
- locked <0x00000007ab453ce0> (a jcp.chl.deadlock.X)
at jep.chl.deadlock.DeadlockDemo1.<init>(DeadlockDemo1l.java:12)
at jep.chl.deadlock.DeadlockDemol.main(DeadlockDemol.java:22)

Locked ownable synchronizers:
- None

Found one Java-level deadlock:

"Child Thread":
waiting to lock monitor 0x000000000f50f278 (object 0x00000007ab453ce0, a jcp.chl.deadlock.X),
which is held by "Parent Thread"

"Parent Thread":
waiting to lock monitor 0x000000000f50dd28 (object 0x00000007ab455670, a jcp.chl.deadlock.Y),

48 JAVA CONCURRENT PROGRAMMING: A QUANTITATIVE APPROACH

which is held by "Child Thread"

Java stack information for the threads listed above:
"Child Thread":
at jcp.chl.deadlock.X.hangUp(X.java:21)
- waiting to lock <0x00000007ab453ce0> (a jcp.chl.deadlock.X)
at jcp.chl.deadlock.Y.callMe(Y.java:16)
- locked <0x00000007ab455670> (a jcp.chl.deadlock.Y)
at jep.chl.deadlock.DeadlockDemol.run(DeadlockDemol.java:17)
at java.lang.Thread.run(Thread.java:744)
"Parent Thread":
at jcp.chl.deadlock.Y.hangUp(Y.java:20)
- waiting to lock <0x00000007ab455670> (a jcp.chl.deadlock.Y)
at jep.chl.deadlock.X.callMe(X.java:17)
- locked <0x00000007ab453ce0> (a jcp.chl.deadlock.X)
at jcp.chl.deadlock.DeadlockDemol.<init>(DeadlockDemo1l.java:12)
at jcp.chl.deadlock.DeadlockDemol.main(DeadlockDemo1l.java:22)

Found 1 deadlock.

1.9 SUSPENDING, RESUMING, AND STOPPING THREADS

Java 1.0 provided methods such as suspend(), resume(), and stop(), to manage thread executions.
However, it’s important to know that all those methods have been deprecated since Java 2.0 for various
reasons, for example:

= The suspend () method is deprecated as it can sometimes cause serious system failures. For example,
when a thread has obtained locks on critical data structures and is suspended at some point, those
locks may not be relinquished, causing other threads waiting for those resources to be deadlocked.

» The resume () method is deprecated since it is supposed to resume a suspended thread and the
suspend () method is deprecated.

= The stop () method is also deprecated since Java 2 for reasons similar to why the suspend () method
is deprecated. When a thread is writing to a data structure in the midway while it is stopped, the data
structure might be left in a corrupted state. The stop() method causes any lock that the calling thread
holds to be released. Thus, the corrupted data might be used by other threads waiting on the same
lock.

Since Java 2, it is recommended to depend on Boolean variables, such as a suspendFlag declared within
a thread, to control thread suspending and resuming operations. In general, it’s not good practice to
manage your threads with your own customized code, as there are too many potential execution paths
that may lead to system failures. Instead, consider the following:

= Using the ExecutorService framework introduced in Java 5 that allows thread pools to be created and
managed more transparently.

CHAPTER 1: MULTITHREADED PROGRAMMING IN JAVA 49

= Using the Fork-Join framework introduced in Java 7 for large-scale, compute-intensive applications,
as it will allow applications to scale automatically to make use of the available processors in a
modern multi-core system.

The next chapter introduces the ExecutorService framework, while Chapter 8 introduces the Fork-Join
framework.

1.10 THE JAVA MEMORY MODEL

In general, Java memory model consists of three parts: locks (implicit or explicit), volatile variables and
the final keyword. Throughout this text, you will see many such examples. However, the keyword final
can be used much more broadly, such as:

1. Class: When a class is declared final, it cannot be inherited.

2. Method: When a method is declared final, it cannot be overridden.

3. A variable: When a variable is declared final, it cannot be modified (or mutated) once
initialized. Thus, a “final” object is immutable. This is a very important concept, as we know
that an immutable object can be read concurrently without having to be locked.

This book focuses on achieving synchronization mostly with the help of locks and sometimes with the
volatile modifier.

1.11 THE BRIDGE EXAMPLE

Before concluding this chapter, I’d like to share a Java concurrent programming exercise | once got from
a prospective employer prior to an interview arranged later. The description for that exercise is given
below. If you are interested in consolidating what you have learnt in this chapter, | suggest that you try to
complete this exercise on your own, and then compare with my implementation given in Appendix B.

Programing Exercise

Please write this in Java. The car is the thread and the run method cannot be empty

There is a one-lane bridge on which at most three cars can travel. There is no
external coordinator and the cars must make their own decision about crossing
the bridge. Assume that all cars play nicely and want to avoid collision. Write a
program where the threads (cars) access the bridge (shared resource).
Implementation should be fair. If there are cars waiting at both ends, only 3 cars
travel from each end in an alternate manner. If there are no cars on the other
end, cars can travel until a single car shows up at the other end.’

1.12 SUMMARY

This chapter started with introducing some basic concepts about Java threads, including potential issues
with Java concurrency and all possible states for a Java thread. It then focused on how to create Java
threads by implementing the Runnable interface or extending the Thread class.

50 JAvA CONCURRENT PROGRAMMING: A QUANTITATIVE APPROACH

However, the main theme of this chapter is to help you understand how the synchronized keyword
feature (or the implicit monitor locks) introduced since Java 1.0 can help solve many Java concurrency
problems. It’s important to understand how threads can be coordinated with methods such as wait (),
notify() and notifyAll(), in conjunction with guarded blocks on certain crucial conditions if
necessary. Using several different versions of the SimpleBuffer example, we demonstrated potential
issues caused by busy-waits, such as livelock, starvation, etc. A simple deadlock example was presented
to show how a deadlock might happen if a circular dependency exists between two threads waiting for
the other party to release a lock first. The jvisualvm tool was introduced to demonstrate how a deadlock
situation could be accurately pinpointed down with the help of a thread dump, which gives detailed
information about the stack trace associated with the deadlocked threads.

I suggest that you study the various versions of the SimpleBuffer example carefully to understand
various issues and outcomes as summarized in Table 1.1. | also suggest that you revisit those screenshots
taken with jvisualvm to characterize patterns of color changes for threads involved, associated with
livelock, starvation, deadlock and normal cases.

Table 1.1 Various versions of the SimpleBuffer example

Code Listing | Busy-Wait | Condition check Synchronized | Outcome Figure
1.9(a) yes no no OOB Exception | -
1.10(d) yes yes no livelock 1.7
111 yes yes yes starvation 19
1.12 no yes yes OK 1.10

We concluded the chapter by introducing an optional exercise of solving the classical concurrent
programming example of having multiple cars crossing a bridge, which can be implemented by just
using the synchronized keyword feature introduced since Java 1.0. Appendix B provides a reference for
that exercise.

The next chapter focuses on the ExecutorService framework introduced in Java 5. This framework is
commonly used in multi-threaded Java applications running in production environments, in the context
of dealing with the following concurrent programming problems:

= Mutual exclusion problems. Involved memory locations must be accessed by a single thread only,
such as the incremental operation (i++).

= Producer-consumer problems. Conditional waits must be introduced to block the other party until
certain conditions are met.

= Readers-writers problems. Readers and writers can be arranged to access a shared data structure
concurrently without having to block each other.

It’s important to always realize what concurrent programming problems we are trying to solve and how
they are solved.

CHAPTER 1: MULTITHREADED PROGRAMMING IN JAVA 51

1.13 EXERCISES

Exercise 1.1 What’s the difference between a process and a thread?
Exercise 1.2 What’s the implication of Equation (1.1), the performance law for sequential programs?

Exercise 1.3 Describe how you can use Equations (1.1) and (1.6) to gauge performance optimization
initiatives and efforts for a particular performance issue.

Exercise 1.4 What are the two major concerns with concurrent programs?

Exercise 1.5 What does the term “happens-before” mean in the context of concurrent programming?
What measures are typically employed to help enforce “happens-before” relationships?

Exercise 1.6 Describe the difference between the synchronized keyword and the volatile keyword.
Exercise 1.7 What does the Thread.join () method do?

Exercise 1.8 What’s the difference between the thread states of BLOCKED and
WAITING/TIMED_WAITING?

Exercise 1.9 Describe when to use the Runnable interface or the Thread class to create a new thread.

Exercise 1.10 State the criterion for choosing between synchronizing a method and synchronizing a
block.

Exercise 1.11 Why is busy-wait or busy-spin not desirable?
Exercise 1.12 Describe what it means exactly by the term of livelock or starvation or deadlock.
Exercise 1.13 Write a simple deadlock program.

Exercise 1.14 How do you determine if the threads are running normally, or livelocked, or starving, or
dead-locked?

Exercise 1.15 With the SimpleBuffer examples presented in this chapter, why are array indexes not
wrapped around?

