
10 HADOOP 2 ESSENTIALS: AN END-TO-END APPROACH

SDKs should work. Don’t forget setting your JAVA_HOME environment variable on your Windows PC.

(If it happens that you don’t know how to set an env variable on Windows, please google it).

The next step is to create a Maven/Eclipse project for the MapReduce programs presented throughout this

book.

1.2.2 Setting up a Maven/Eclipse Hadoop Development Environment

Note: On Windows, I always create a personal folder like C:\mspc to hold my own stuff like myapp,

mydev, etc., in one place. (Incidentally, “mspc” means “my space.”) The instructions given below are

based on such an assumption. Also, I assume that the reader is familiar with how to search online and

install open source software, how to create environment variables and how to add the “bin” folder of a

software package to the PATH environment variable of the underlying OS, and so on. If not, please search

online to take care of such nuances on your own.

This section describes how to set up a Maven/Eclipse project for our Hadoop 2 samples. Please follow

the below steps:

1) JDK: If you do not have a JDK installed, install a latest Java 7 JDK, e.g., JDK1.7.0_45 or

newer. Set the JAVA_HOME environment variable and add %JAVA_HOME%\bin to your

PATH environment variable.

2) Maven: If you do not have Maven installed, download and unzip it to a folder on your PC. For

example, I installed Maven at C:\mspc\myapp\apache-maven-3.1.1 on my PC. Also, for

convenience, set the M2_HOME environment variable and add %M2_HOME%\bin to your

PATH environment variable.

3) Eclipse: If you do not have Eclipse Juno for Java Developers installed, download and install it.

For example, I installed Eclipse at C:\mspc\myapp\eclipse_juno on my PC. If Maven is not

enabled on your Eclipse, you need to enable it as described in Appendix B.

4) Hadoop 2.2.0: You need to add all Hadoop core jar files to your Hadoop sample project. Refer

to Figure 1.3 and download the hadoop-2.2.0.tar.gz package onto a Linux machine. Unzip it and

copy the hadoop-2.2.0 folder to the workspace folder of your Eclipse.

5) The my_hadoop-2.2.0 project: Follow the below steps:

a. Download the my_hadoop-2.2.0 project from this book’s website at

http://www.perfmath.com/download.htm, unzip it and copy the my_hadoop-2.2.0

folder to the workspace folder of your Eclipse.

b. Create a new Java project with the same name of my_hadoop-2.2.0 and finish it with

all default settings. Now the my_hadoop-2.2.0 project on your Eclipse should look

similar to Figure 1.5. Note that the folder named java-src is a linked source that is

linked to the sample programs contained in the module1 module. Since it’s a source

folder, automatic error checking is enabled. (If you see a folder named perfmath under

the project, delete it as it’s created by mistake by Eclipse – Eclipse has problems in

importing linked sources).

http://www.perfmath.com/download.htm

CHAPTER 1: INTRODUCTION TO HADOOP 11

6) Build the sample project with Maven: Open up an MS-DOS command prompt, change to your

project directory and execute the following command and verify that your build process is

successful with similar output as shown in Listing 1.1:

 cmd>mvn clean package –DskipTests –Dhadoop.version=2.2.0

You can jump to Section 1.2.3 now.

Figure 1.5 The my_hadoop-2.2.0 project on Eclipse

Listing 1.1 Output of building the my_hadoop_2.2.0 sample project

C:\mspc\mydev\workspace\my_hadoop-2.2.0>mvn package -DskipTests -Dhadoop.version=2.2.0
[INFO] Scanning for projects...
[INFO] --
[INFO] Reactor Build Order:
[INFO]
[INFO] Base
[INFO] Module1
[INFO] Util
[INFO] Spending Patterns
[INFO] Root
[INFO]
[INFO] --
[INFO] Building Base 1.0
[INFO] --
…….
[INFO]
[INFO] --
[INFO] Building Root 1.0

12 HADOOP 2 ESSENTIALS: AN END-TO-END APPROACH

[INFO] --
[INFO] --
[INFO] Reactor Summary:
[INFO]
[INFO] Base .. SUCCESS [0.479s]
[INFO] Module1 ... SUCCESS [2.801s]
[INFO] Util .. SUCCESS [0.093s]
[INFO] Spending Patterns SUCCESS [0.673s]
[INFO] Root .. SUCCESS [0.006s]
[INFO] --
[INFO] BUILD SUCCESS
[INFO] --
[INFO] Total time: 4.184s
[INFO] Finished at: Wed Feb 19 18:46:31 PST 2014
[INFO] Final Memory: 23M/316M
[INFO] --
C:\mspc\mydev\workspace\my_hadoop-2.2.0>

1.2.3 Maven pom.xml Files for the Hadoop 2 Project

After importing the Hadoop 2 sample project for this book, notice the five modules as shown in Figure

1.5. Each of the modules is described as follows:

■ base: This module defines all Maven plug-ins and all non-Hadoop dependencies, which are shared

among all other modules. See the pom.xml file for this module by expanding this module on Eclipse.

Out of those Maven plug-ins, the compiler plug-in is for compiling Java sources, the failsafe and

surefire are related to running JUnit tests, while the enforcer plug-in is for environmental constraint

checking such as Maven and JDK versions. The dependencies include logging and apache commons.

■ profiles: This module defines all Hadoop dependencies required by all Hadoop programs. These

dependencies are specified in terms of profiles. A profile defines a group of dependencies that can be

activated at build time through an element of <activation> inside the pom.xml file. See the

pom.xml file for this module by expanding this module on Eclipse, which contains two profiles of

hadoop-2.2.0 and hadoop-1.0.3. By passing in the profile in the form of –

Dhadoop.version=<version-number> at build time when an mvn command is issued, for example,

mvn package –Dhadoop.version=2.2.0, the designated profile will be used. This is convenient

when you want to build a package using different versions of the same framework.

■ util: This module centralizes all utility programs for all Hadoop programs. As is shown in the

pom.xml file for this module, its parent is specified with a <relativePath> tag pointing to the

profiles’ pom.xml file, which is because the profiles module is at the same containing directory

as the util module rather than one level higher. Also note that util’s packaging is specified as jar

since it is for containing Java sources.

■ module1: We use this module to demonstrate how to develop our first Hadoop MapReduce program,

which processes customer credit card spending activities. As is shown in the pom.xml file for this

module, its parent is also specified with a <relativePath> tag pointing to the profiles’ pom.xml

file. The packaging format for this module is specified as jar as well since it contains Java sources.

